Somersaulting- for longer distances.It bends the narrow end in the direction it wants to go & takes grip with tentacles. It releases the broad end and straightens up. like this it continues. looping- for shorter distances.
Hope this helps
Answer:
The work done by gravity is 784 J.
Explanation:
Given:
Mass of the block is, 
Height to which it is raised is, 
Acceleration due to gravity is, 
Now, work done by gravity is equal to the product of force of gravity and the distance moved in the direction of gravity. So,

Force of gravity is given as the product of mass and acceleration due to gravity.
. Now,

Therefore, the work done by gravity is 784 J.
A baseball will curve better on the flat plain if it is higher than sea level but low elevation.
Hope this helped!
Answer:
8.13secs
Explanation:
From the question weal are given
Height H =324m
Required
time it takes to drop t
Using the equation of motion
H = ut + 1/2gt²
Substitute the given values
324 = 0(t)+1/2(9.8)t²
324 = 1/2(9.8)t²
324 = 4.9t²
t² =324/4.9
t² = 66.12
t = √66.12
t = 8.13secs
Hence the time taken to drop is 8.13secs
Answer:
Explanation:
Given that,
Assume number of turn is
N= 1
Radius of coil is.
r = 5cm = 0.05m
Then, Area of the surface is given as
A = πr² = π × 0.05²
A = 7.85 × 10^-3 m²
Resistance of
R = 0.20 Ω
The magnetic field is a function of time
B = 0.50exp(-20t) T
Magnitude of induce current at
t = 2s
We need to find the induced emf
This induced voltage, ε can be quantified by:
ε = −NdΦ/dt
Φ = BAcosθ, but θ = 90°, they are perpendicular
So, Φ = BA
ε = −NdΦ/dt = −N d(BA) / dt
A is a constant
ε = −NA dB/dt
Then, B = 0.50exp(-20t)
So, dB/dt = 0.5 × -20 exp(-20t)
dB/dt = -10exp(-20t)
So,
ε = −NA dB/dt
ε = −NA × -10exp(-20t)
ε = 10 × NA exp(-20t)
Now from ohms law, ε = iR
So, I = ε / R
I = 10 × NA exp(-20t) / R
Substituting the values given
I = 10×1× 7.85 ×10^-3×exp(-20×2)/0.2
I = 1.67 × 10^-18 A