Answer:
The total pressure of the mixture in the tank of volume 6.25 litres at 51°C is 1291.85 kPa.
Explanation:
For N2,
Pressure(P₁)=125 kPa
Volume(V₁)=15·1 L
Temperature (T₁)=25°C=25+273 K=298 K
Similarly, for Oxygen,
Pressure(P₂)= 125 kPa
Volume(V₂)= 44.3 L
Temperature(T₂)=25°C= 298 K
Then, for the mixture,
Volumeof the mixture( V)= 6.25 L
Pressure(P)=?
Temperature (T)= 51°C = 51+273 K=324 K
Then, By Combined gas laws,

or, 
or, 
or, 
∴P=1291.85 kPa
So the total pressure of the mixture in the tank of volume 6.25 litres at 51°C is 1291.85 kPa.
Answer:
Saffi only
Explanation:
I just took the test and that was the correct answer :)
Answer:
K = 0.2
Explanation:
Based on the chemical dissociation of N₂O₄:
N₂O₄ ⇄ 2NO₂
The equilibrium constant, K, of the reaction is:
K = [NO₂]² / [N₂O₄]
Now, if 20% of N₂O₄ is dissociated, 80% remains as N₂O₄ = 0.8mol/L = 0.8M
as 20% is dissociated, 0.2moles of N₂O₄ were dissociated and 0.2*2 = 0.4mol/L of NO₂ are produced.
Replacing in K:
K = [0.4M]² / [0.8M]
<h3>K = 0.2</h3>
G about the answer if I don’t do this I Will fail!!!!!! NO LINKS NO LYING
Answer: K only has 1 valence electron. It will leave with only a little effort, leaving behind a positively charged K^+1 atom.
Explanation: A neutral potassium atom has 19 total electrons. But only 1 of them is in potassium's valence shell. Valence shell means the outermost s and p orbitals. Potasium's electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1. The 4s orbital is the only orbital in the 4th energy level. So it has a valency of 1. This means this electron will be the most likely to leave, since it is the lone electron in the oyutermost energy level (4). When that electron leaves, the charge on the atom go up by 1. The atom now has a full valence shell of 3s^2 3p^6, the same as argon, Ar.