As such, all objects free fall at the same rate regardless of their mass. Because the 9.8 N/kg gravitational field at Earth's surface causes a 9.8 m/s/s acceleration of any object placed there, we often call this ratio the acceleration of gravity.
The time is the same it just feels faster because your literally falling from the sky and since your scared it will either go by slower or faster
Carbon and silicon have same number of valance electrons which is 4 electrons
Now, Barium is a 2nd group element. So, it has two valance electrons.
Silicon is a 16th group element and it has 4 valance electrons as does the carbon. This is because they both stay in the same group in the periodic table.
Neon is a noble gas which has 8 valance electrons and stays in the 18th group.
Therefore, carbon and silicon have same number of valance electrons which is 4 electrons.
<h3>What are Valence electrons ?</h3>
The electrons in an atom's outermost shell, or energy level, are called valence electrons. For instance, the valence electrons of oxygen are six, with two in the 2s subshell and four in the 2p subshell.
- The number of valence electrons for neutral atoms is the same as the number of the atom's main group. A periodic table element's column can be used to determine its main group number. For instance, carbon, which belongs to group 4, has four valence electrons. Group 6 oxygen contains six valence electrons.
Learn more about Valence electrons here:
brainly.com/question/371590
#SPJ4
Answer:
Xe:[Kr]4d¹⁰5(sp³d³)₆⁺² => Octahedral Geometry (AX₆)⁺²
Explanation:
Xe:[Kr]4d¹⁰(5s²5p₋₁²p₀²p₁²5d₋₂d₋₁d₀)⁺² => Xe[Kr]5(sp³d³)₆²
Ca. #Valence e⁻ = Xe + 6F - 2e⁻ = 1(8) + 6(7) - 2 = 48
Ca. #Substrate e⁻ = 6F = 6(8) = 48
#Nonbonded free pairs e⁻ = (V - S)/2 = (48 - 48)/2 = 0 free pairs
#Bonded pairs e⁻ = 6F substrates = 6 bonded pairs
BPr + NBPr = 6 + 0 = 6 e⁻ pairs => Geometry => [AX₆]⁺² => Octahedron
Xe:[Kr]4d¹⁰(5s²5p₋₁²p₀²p₁²5d₋₂d₋₁d₀)⁺² => Xe[Kr]5(sp³d³)₆⁺²
XeF₆⁺² => 6(sp³d³) hybrid orbitals => Octahedral Geometry (AX₆)
Answer:
If you have ever been in a room when a piping hot pizza was delivered, you have been made aware of the fact that gaseous molecules can quickly spread throughout a room, as evidenced by the pleasant aroma that soon reaches your nose. Although gaseous molecules travel at tremendous speeds (hundreds of meters per second), they collide with other gaseous molecules and travel in many different directions before reaching the desired target.
Explanation:
hope this helps
<u>Given:</u>
Mass of Ba = 1.50 g
Mass of H2O = 100.0 g
Initial temp T1 = 22 C
Final Temp T2 = 33.1 C
specific heat c = 4.18 J/g c
<u>To determine:</u>
The reaction enthalpy
<u>Explanation:</u>
The heat released during the reaction is:
q = - mc(T2-T1) = - (100+1.5) g *4.18 J/g C * (33.1-22) C = -4709.4 J
# moles of Ba = Mass of Ba/Atomic mass of Ba = 1.5 g/137 g.mol-1 = 0.0109 moles
ΔH = q/mole = - 4709.4 J/0.0109 moles = - 432 kJ/mol
Ans : The enthalpy change for the reaction is -432 kJ/mol