The pressure exerted by 0.400 moles of carbon dioxide in a 5.00 Liter container at 25 °C would be 1.9563 atm or 1486.788 mm Hg.
<h3>The ideal gas law</h3>
According to the ideal gas law, the product of the pressure and volume of a gas is a constant.
This can be mathematically expressed as:
pv = nRT
Where:
p = pressure of the gas
v = volume
n = number of moles
R = Rydberg constant (0.08206 L•atm•mol-1K)
T = temperature.
In this case:
p is what we are looking for.
v = 5.00 L
n = 0.400 moles
T = 25 + 273
= 298 K
Now, let's make p the subject of the formula of the equation.
p = nRT/v
= 0.400 x 0.08206 x 298/5
= 1.9563 atm
Recall that: 1 atm = 760 mm Hg
Thus:
1.9563 atm = 1.9563 x 760 mm Hg
= 1486.788 mm Hg
In other words, the pressure exerted by the gas in atm is 1.9563 atm and in mm HG is 1486.788 mm Hg.
More on the ideal gas law can be found here: brainly.com/question/28257995
#SPJ1
Answer:
Two conversion factors:

Explanation:
You can create two possible <em>conversion factors</em>, one to convert from mL to L, and one to convert from L to mL
<u />
<u>a) From mL to L</u>
To convert mL to L you need to multiply by a conversion factor that has mL on the denominator and L in the numerator.
Your starting point is: 
Then, divide both sides by 1,000mL (this will be on the denominator of the fraction);

<u>b) From L to mL</u>
Divide both sides by 1 L:

Answer:
Explanation:
%Carbon = mass of carbon / mas of C13H18O2) X100%
= 13X12/ (13X12+18+2X16)X100%
= 156/206) X100%= 75.7%
Answer:
6.02*10^23
Explanation:
This is the number for one mole. Just like one dozen = 12, one mole = 6.02*10^23.
Fun fact, if you had a mole of pennies you could spend 1 million dollars every second of your life and not have even spent 1% of it by the time you die at 100 years old.