Answer:
The solution is not ideal.
The relative strengths of the solute-solvent interactions are greater compared to the solute-solute and solvent-solvent interactions
Explanation:
The total vapor pressure is the sum of the partial pressures of water and methanol, and they are calculated by the Raoult´s law equation:
Pₐ = Xₐ Pºₐ, where Pₐ is the partial pressure of component A
Xₐ is the molar fraction of A
P⁰ₐ is the pressure of pure A
So lets calculate the partial pressures of methanol and water and compare them with the given total vapor pressure of solution:
X H2O = 0.312 ⇒ X CH3OH = 1 - 0.312 = 0.688
PH2O = 0.312 x 55.3 torr = 17.3 torr
PCH3OH = 0.688 x 256 torr = 176.1 torr
Ptotal = PH2O + PCH3OH = 17.3 torr + 176.1 torr = 193.4 torr
This pressure is less than the experimental value of 211 torr. So the solution is not ideal. The relative strength of the solute-solvent interactions are greater than the solute-solute and solvent-solvent interactions.
The reason for this is the presence of hydrogen bonding between methanol and water.
I believe the answer is Limestone
Limestone is one of the vital minerals that is used to make cement. It is a sedimentary rock composed mostly of the calcium carbonate and, according to mineral coalition, it comprises about 15% of the Earth's sedimentary crust.
Answer:
The amount of heat released when 50 g of water cooled from 20°C to 10°C will be equal to - 2093 J.
Explanation:
Given data:
Mass of water = 50 g
Initial temperature= T1 = 20°C
Final temperature= T2 = 10°C
Specific heat of water= c = 4.186 J/g. °C
Amount of heat released = Q= ?
Solution:
Formula:
Q = m. C. ΔT
ΔT = T2 - T1
ΔT = 10°C - 20°C
ΔT = -10°C
Now we will put the values in formula.
Q = m. C. ΔT
Q = 50 g . 4.186 J/g. °C . -10°C
Q = - 2093 J
The amount of heat released when 50 g of water cooled from 20°C to 10°C will be equal to - 2093 J.
Answer:
The mole is the SI unit for amount of a substance.
Explanation:
Just like the dozen and the gross, it is a name that stands for a number. There are therefore 6.02 × 10 23 water molecules in a mole of water molecules.