Answer:
The orbital shapes are actually representation of (Ψ)2 all over the orbit simplified ... ψnlml(r,θ,ϕ)=Rnl(r)Ymll(θ,ϕ) , ... and thus it is directly linked to the angular and radial nodes. ... for different quantum values(which can be assigned to different orbitals are ) .... The two types of nodes are angular and radial.
Explanation:
hope it helps
Option C. The object is returning to the start at a constant speed.
<h3>
Data points of the Position vs Time graph</h3>
The following data points will be used to determine the motion of the object.
<u>Position Time</u>
12 4
10 6
2 8
0 10
From the data above, the position of the object is decreasing towards zero or start point.
Thus, the object is returning to the start at a constant speed.
Learn more about position here: brainly.com/question/2364404
#SPJ1
Answer:
Theoretical yield = 2.5 g
Explanation:
Given data:
Mass of sodium = 79.7 g
Mass of water = 45.3 g
Theoretical yield of hydrogen gas = ?
Solution:
Chemical equation:
2Na + 2H₂O → 2NaOH + H₂
Number of moles of sodium:
Number of moles = mass/ molar mass
Number of moles = 79.7 g / 23 g/mol
Number of moles = 3.5 mol
Number of moles of water:
Number of moles = mass/ molar mass
Number of moles = 45.3 g / 18g/mol
Number of moles = 2.5 mol
Now we will compare the moles of hydrogen gas with water and sodium.
H₂O : H₂
2 : 1
2.5 : 1/2×2.5 =1.25 mol
Na : H₂
2 : 1
3.5 : 1/2×3.5 =1.75 mol
water will be limiting reactant.
Theoretical yield:
Mass = number of moles × molar mass
Mass = 1.25 mol × 2 g/mol
Mass = 2.5 g
Answer:

Explanation:
First, we find in the tables the ΔH of formation of each compound. As you can see in the (image 1)
Then we solve the ecuation for ΔH°reaction
ΔH°reaction=∑ΔH°f(products)−∑ΔH°f(Reactants)
ΔH°reaction= (-2* 393.5 - 2*285.8) - (52.4 + 0) kJ/mol
ΔH°reaction = -1.41 *10^3 kJ/mol
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST