According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
The answer is most likely A
Answer:
q₃ = -4.81 nC
Explanation:
We can use the Gauss Law here:
∅ = q/∈₀
where,
∅ = Net Flux = - 216 N.m²/C
q = total charge enclosed inside sphere = ?
∈₀ = permittivity of free space = 8.85 x 10⁻¹² C/N.m²
Therefore,
- 216 N.m²/C = q / 8.85 x 10⁻¹² C²/N.m²
q = (-216 N.m²/C)(8.85 x 10⁻¹² C²/N.m²)
q = - 1.91 nC
So, the total charge will be sum of all three charges:
q = q₁ + q₂ + q₃
- 1.91 nC = 1.74 nC + 1.16 nC + q₃
q₃ = - 1.91 nC - 1.74 nC - 1.16 nC
<u>q₃ = -4.81 nC</u>
Answer:
Ф,
Ф
Explanation:
Now find the components NxNxN_x and NyNyN_y of N⃗ N→N_vec in the tilted coordinate system of Part B. Express your answer in terms of the length of the vector NNN and the angle θθtheta, with the components separated by a comma.
Vectors are quantities that have both magnitude and direction while scalar quantities have only magnitude but no direction.
This a vector quantity
from the diagram the horizontal component of the length of the vector will be
Ф
the vertical component will be
Ф
this is in the opposite direction because the x can be extrapolated to the negative axis
Speed is scalar, meaning it's only going to be like 74 mph, doesn't matter which direction. Velocity is a vector, meaning it has direction. You can go -74mph when talking about velocity, not speed.