frequency is equal to number of oscillations or vibrations upon time
therefore,
check picture
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N
Answer:
D. Ramesh and Ravi are correct, but they are using different measurement scales.
\Huge{\underline{\textrm{Explanation}}}Explanation
Here, Ravi says that his body temperature is 100 degrees, but does not mention that whether it is 100 degrees Celsius or 100 degrees Fahrenheit. When the temperature of a human body is more than 100.4 degree Fahrenheit (38°C), or near to it, the person is considered to have fever.
The boiling point of water is 100 degrees Celsius and not 100 degrees Fahrenheit.
Thus, they both are using different measurement scales.
Energy is released in the reaction
Explanation:
In a given where the energy of the products is greater than that of the reactants, we can infer that energy is released in the reaction.
This indicates that the reaction is an exothermic or exergonic reaction.
These reaction types are accompanied by release of energy.
- In an exothermic change energy is released to the surroundings.
- The surrounding becomes hotter at the end of the change.
- This applies in exergonic reaction which leaves a reaction having more energy than it originally started with.
Learn more:
Exothermic process brainly.com/question/10567109
#learnwithBrainly
Answer:
the speed after 3 seconds is 10 m/s
Explanation:
The computation of the speed is shown below:
As we know that
V = U + at
Here,
U = 34 m/s
a = - 8 m/s²
t = 3 Sec
V = velocity after 3 sec
V = 34 + (-8)3
= 34 - 24
V = 10 m/s
Hence, the speed after 3 seconds is 10 m/s