Answer:
Object distance means what is the distance between pole and object. Image distance means when image is formed then the distance between pole and image is called image distance. Focal length is the distance between pole and the principal focus of the mirror.
A lens is a clear object, usually made of glass or plastic, which is used to refract, or bend light. Lenses can concentrate light rays (bring them together) or spread them out. Common examples of lenses include camera lenses, telescope lenses, eyeglasses, and magnifying glasses. Lenses are often double lenses, meaning they have two curved sides. A convex lens is rounded outward, while a concave lens curves inward. (A great way to remember this is that a concave lens creates an indent like a cave!)
The image distance can be calculated with the knowledge of object distance and focal length with the help of lens formula. In optics, the relationship between the distance of an image (i), the distance of an object (o), and the focal length (f) of the lens are given by the formula known as Lens formula. Lens formula is applicable for convex as well as concave lenses. These lenses have negligible thickness. It is an equation that relates the focal length, image distance, and object distance for a spherical mirror. It is given as,
1/i + 1/o = 1/f
i= distance of the image from the lens
o= distance of the object from the lens
f= focal length of the lens
Explanation:
Hope it is helpful....
If something is going down a hill it can help slow it down
it can stop you from flying off a rollercoaster
Answer:
A measurement standard is a quantity that people agree to use as a comparison. Standards are important because they allow measurements to be compared even if different people in different parts of the world take them.
Hope this helps ⊂◉‿◉つ
Answer:
Saturn's differential rotation will cause the length of a day measures to be longer by 0.4 hours
Explanation:
Differential rotation occurs due to the difference in angular velocities of an object as we move along the latitude of the or as we move into different depth of the object, indicating the observed object is in a fluid form
Saturn made almost completely of gas and has differential motion given as follows
Rotation at the equator = 10 hours 14 minutes
Rotation at high altitude = 10 hours 38 minutes
Therefore;
The differential rotation = 10 hours 38 minutes - 10 hours 14 minutes
The differential rotation = 24 minutes = 24 minutes × 1 hour/(60 minutes) = 0.4 hours
The differential rotation = 0.4 hours
Therefore, the measured day at the higher altitude will be 0.4 longer than at the equator.
Answer:
43.43
Explanation:
5.746 x 7.56 = 43.43976
As the least number of desimal is two so our awnser should contain two digits after the decimal point.
Ans: 43.43.