ιт ιѕ ¢αℓℓє∂ тнє ρα¢ιfι¢ ρℓαтє. ιт ιѕ α σ¢єαиι¢ тє¢σиι¢ ρℓαтє, ιт ℓιєѕ вєиєαтg тgє ρα¢ιfι¢ σ¢єαи
нσρє ι ¢συℓ∂ нєℓρ уσυ συт.
Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>
Carbon has a higher boiling point.
Answer:
2K + 2H₂O → 2KOH + H₂
Explanation:
The reactants are:
Potassium metal = K
Water = H₂O
The products are:
Potassium hydroxide = KOH
Hydrogen gas = H₂
The reaction equation is given as;
Reactants → Products
2K + 2H₂O → 2KOH + H₂
The reaction is a single displacement reaction