One difficulty encountered in precipitation titration is that it is hard to determine the exact end point of its reaction.
Precipitation titration is a titration in which a reaction occurs from the analyte and titrant to form an insoluble precipitate.
With the use of silver for the titrations, (argentometric) we are able to develop many precipitation reactions.
The precipitation titrimetry methods with the use of argentometry includes
• Mohr’s Method
• Fajan’s Method
• Volhard’s Method
Difficulties encountered in precipitation titration includes
- Getting the exact end point is hard.
- it is a very slow titration method.
- it includes periods of filtration and cooling thereby reducing the reactions available for this type of titration.
See more on Precipitation: brainly.com/question/20628792
Answer:
the answer is 1- loses
Explanation:
When water freezes it gives up some of the water's energy.
Answer: option D. The attractive forces between the sodium and chloride ions are overcome by the attractive forces between the water and the sodium and chloride ions.
Explanation:
<em>Solid sodium chloride</em> (NaCl) is a ionic compound formed by ionic bonds between by the positive, metallic cations of sodium atom, Na⁺, and the negative, non-meatllic anions of chlorine atom, Cl⁻ (chloride).
Ionic bonds, then, are the electrostatic attracion between oppositely charged particles (cations and anions).
<em />
<em>When solid sodium chloride dissolves in water</em>, the ions (cations and anions) are separated in the solvent (water) due to the superior attracitve forces between such ions and the polar water molecules.
<em>Water</em> (H₂O) is a molecule, formed by polar covalent bonds between two hydrogen atoms and one oxygen atom.
The polarity of water molecule is due to the fact that oxygen atoms are more electronegative than hydrogen atoms, which cause that the electron density is closer to oxygen nuclei than to hydrogen nuclei. This asymmetry in the electron density conferes a partial positive charge over each hydrogen atom and a partial negative charge over the oxygen atoms.
Thus, the positively charged hydrogen atoms attract and surround the negative chloride (Cl⁻) anions, while the negatively charged oxygen atoms attract and surround the positive sodium (Na⁺) cations. It is only because the attractive forces between the water and the sodium and chloride ions are stronger than the attractive forces between the sodiium and chloride ions that such ions may be kept separated in the solution. This process is called solvation and the ions are said to be solvated by the water molecules.