The correct options are:
D
"Radio waves have a lower frequency, which makes them safer for humans."
B
"Radio waves take less energy to produce."
<h3>
Why do we radio waves over other electromagnetic waves to transmit information to Earth? </h3>
Radio waves are electromagnetic waves with frequencies on the range from 10 KHz to 10 THz.
Now, remember that all electromagnetic waves have the same speed, which is the speed of light, and the energy of a wave is proportional to its frequency.
Particularly, we can see that radio waves have small frequencies (smaller than infrared light) so these waves carry very little energy.
With that in mind, the correct options are.
D
"Radio waves have a lower frequency, which makes them safer for humans."
B
"Radio waves take less energy to produce."
These are the two main reasons of why we use radio waves.
If you want to learn more about electromagnetic waves.
brainly.com/question/14015797
#SPJ1
Answer:
Given:
radius of the coil, R = 6 cm = 0.06 m
current in the coil, I = 2.65 A
Magnetic field at the center, B =
Solution:
To find the number of turns, N, we use the given formula:
Therefore,
N = 22.74 = 23 turns (approx)
Answer:
Explanation:
A rectifier is an electrical device that converts alternating current (AC) to direct current (DC), a process known as rectification. Rectifiers have many uses including as components of power supplies and as amplitude modulation detectors (envelope detectors) of radio signals. Rectifiers are most commonly made using solid state diodes but other type of components can be used when very high voltages or currents are involved. When only a single diode is used to rectify AC (by blocking the negative or positive portion of the waveform), the difference between the term diode and the term rectifier is simply one of usage. The term rectifier describes a diode that is being used to convert AC to DC. Most rectifier circuits contain a number of diodes in a specific arrangement to more efficiently convert AC power to DC power than is possible with only a single diode.
Answer:
304 meters downstream
Explanation:
The given parameters are;
The speed of the swimmer = 2.00 m/s
The width of the river = 73.0 m
The speed of the river = 8.00 m/s
Therefore;
The direction of the swimmer's resultant velocity = tan⁻¹(8/2) ≈ 75.96° downstream
The distance downstream the swimmer will reach the opposite shore = 4 × 73 = 304 m downstream
The distance downstream the swimmer will reach the opposite shore = 304 m downstream
Answer:
23 electrons
Explanation:
i just know because im a god