Answer:
I may be wrong sir/ma’am, but I believe it’s 1. Surface temperatures. 3.radio signals from space. And 4. Distance of stars.
Explanation:
sorry y’all:(
Answer: below
Explanation: 1kg of steel is slightly heavier than 1 kg of feathers. 1 kg of feather will displace more air as the density of feather is very less comparitively. More the volume displaced more is the upthrust and less the apparent weight.
The graph is one single line and, as a system solution refers to an intersection point (in other words, a point in common), we affirm both equations share all of their points and thus, such system has infinite solutions.
Answer:
The speed of the raft is 1.05 m/s
Explanation:
The equation for the position of the stone is as follows:
y = y0 + v0 · t + 1/2 · g · t²
Where:
y = height of the stone at time t
y0 = initial height
v0 = initial speed
t = time
g = acceleration due to gravity
The equation for the position of the raft is as follows:
x = x0 + v · t
Where:
x = position of the raft at time t
x0 = initial position
v = velocity
t = time
To find the speed of the raft, we have to know how much time the raft traveled until the stone reached the river. For that, we can calculate the time of free fall of the stone:
y = y0 + v0 · t + 1/2 · g · t² (v0=0 because the stone is dropped from rest)
If we place the origin of the frame of reference at the river below the bridge:
0 m = 95.6 m - 9.8 m/s² · t²
-95.6 m / -9,8 m/s² = t²
t = 3.12 s
We know that the raft traveled (4.84 m - 1.56 m) 3.28 m in that time, then the velocity of the raft will be:
x/t = v
3.28 m / 3.12 s = v
v = 1.05 m/s
Answer:
2000 J per second or 2kJ per second.
Explanation:
The definition for power (W) is the rate of energy (J) per unit of time (seconds). In this case the power output is 2kW, or 2000W. This means the energy rate of the engine must be 2000 joules per second, or 2kJ per second.