Answer:
The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus.
Explanation:
The average speed of gas molecules is given by:

R is the gas constant, T is the temperature and M the molar mass of the gas.
We know that a water molecule has a mass that is 18 times that of a hydrogen atom:

So, we have:

The water molecule cannot escape, since the average velocity of the water molecules is less than one sixth of the escape velocity of venus:

Answer:
t = 1.16 s.
Explanation:
Given,
speed of conveyor belt, v = 3.2 m/s
coefficient of friction,f = 0.28
Using newton second law
f = ma
and we also know that frictional force
f = μ N
f = μ m g
equating both the force equation
a = μ g
a = 0.28 x 9.81
a = 2.75 m/s²
Using Kinematic equation
v = u + at
3.2 = 0 + 2.75 x t
t = 1.16 s.
Time taken by the box to move without slipping is 1.16 s.
Assuming acceleration due to gravity of the moon is constant and there’s no initial velocity in the mans jump we can use one of the kinematic equations. x(final)=x(initial)+(1/2)gt^2. Plug in known values. 0=10-(1.62/2)t^2. The value 1.62 is acceleration of gravity on the moon. Now simply solve for t. t=3.513
Explanation:
Exothermic reaction are those in which heat releases during a reaction
Before the engines fail
, the rocket's horizontal and vertical position in the air are


and its velocity vector has components


After
, its position is


and the rocket's velocity vector has horizontal and vertical components


After the engine failure
, the rocket is in freefall and its position is given by


and its velocity vector's components are


where we take
.
a. The maximum altitude occurs at the point during which
:

At this point, the rocket has an altitude of

b. The rocket will eventually fall to the ground at some point after its engines fail. We solve
for
, then add 3 seconds to this time:

So the rocket stays in the air for a total of
.
c. After the engine failure, the rocket traveled for about 34.6 seconds, so we evalute
for this time
:
