Hi there!
![\large\boxed{(-\infty, \sqrt[3]{-4}) \text{ and } (0, \infty) }](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B%28-%5Cinfty%2C%20%5Csqrt%5B3%5D%7B-4%7D%29%20%5Ctext%7B%20and%20%7D%20%280%2C%20%5Cinfty%29%20%7D)
We can find the values of x for which f(x) is decreasing by finding the derivative of f(x):

Taking the derivative gets:

Find the values for which f'(x) < 0 (less than 0, so f(x) decreasing):
0 = -8/x³ - 2
2 = -8/x³
2x³ = -8
x³ = -4
![x = \sqrt[3]{-4}](https://tex.z-dn.net/?f=x%20%3D%20%5Csqrt%5B3%5D%7B-4%7D)
Another critical point is also where the graph has an asymptote (undefined), so at x = 0.
Plug in points into the equation for f'(x) on both sides of each x value to find the intervals for which the graph is less than 0:
f'(1) = -8/1 - 2 = -10 < 0
f'(-1) = -8/(-1) - 2 = 6 > 0
f'(-2) = -8/-8 - 2 = -1 < 0
Thus, the values of x are:
![(-\infty, \sqrt[3]{-4}) \text{ and } (0, \infty)](https://tex.z-dn.net/?f=%28-%5Cinfty%2C%20%5Csqrt%5B3%5D%7B-4%7D%29%20%5Ctext%7B%20and%20%7D%20%280%2C%20%5Cinfty%29)
(60/21.5)*(18) = 50.23 . . . answer is likely 50 feet tall
Answer:
Isosceles triangle
Step-by-step explanation:
A triangle that contains 2 equal sides but one side different
Answer:
It is a function Jonny!
Step-by-step explanation:
Hello! I would say to Jonny:
Jonny! A function is a relation between two sets, in which every element of the first set (domain) is assigned only one element of the second set (codomain).
If you have serveral elements of the first set with the same corresponding element of the second set it is correct to call that relation a function.
However, if you have an element of the first set for which your relation can relate to more than one element of the second set, then Jonny, that is not a function.
In the present case, every student ID number can only be realted to a number of the set {9, 10, 11, 12}, a student cannot have more than one current grade level. Therefore, that relation is in fact a function
Answer:
- 12, - 7, - 2, 3, 8
Step-by-step explanation:
The general terms of an arithmetic sequence are
a, a + d, a + 2d + ....... + a + (n - 1 )d
To obtain consecutive terms in the sequence add d = 5 to the previous term
= - 12
= - 12 + 5 = - 7
= - 7 + 5 = - 2
= - 2 + 5 = 3
= 3 + 5 = 8