Answer:
0.04455 Hz
Explanation:
Parameters given:
Wavelength, λ = 6.5km = 6500m
Distance travelled by the wave, x = 8830km = 8830000m
Time taken, t = 8.47hours = 8.47 * 3600 = 30492 secs
First, we find the speed of the wave:
Speed, v = distance/time = x/t
v = 8830000/30492 = 289.58 m/s
Frequency, f, is given as velocity divided by wavelength:
f = v/λ
f = 289.58/6500
f = 0.04455 Hz
Answer:
Beta particle
Explanation:
If an alpha particle and a beta particle have the same energy, beta particle will penetrate farther into an object than alpha particle because;
1. In air, beta particles can travel a few hundred times farther than alpha particles.
2. Beta particles have more penetrating power than alpha particles.
3. Alpha particle can be absorbed or stopped by an inch or less 1-2 centimeters of air or a thin piece of tissue while beta particles can be stopped or absorbed by a thin layer of Aluminium.
4. Alpha particles loose all of their energies in a small volume easily that beta particles.
5. Beta particles can traveled a longer distance between 2-3 meters at a speed nearly equal to that of light than alpha particles which travel a distance between 2-4 cm at a speed approximately five percent the speed of light.
Answer:
35.14°C
Explanation:
The equation for linear thermal expansion is
, which means that a bar of length
with a thermal expansion coefficient
under a temperature variation
will experiment a length variation
.
We have then
= 0.481 foot,
= 1671 feet and
= 0.000013 per centigrade degree (this is just the linear thermal expansion of steel that you must find in a table), which means from the equation for linear thermal expansion that we have a
= 22.14°. As said before, these degrees are centigrades (Celsius or Kelvin, it does not matter since it is only a variation), and the foot units cancel on the equation, showing no further conversion was needed.
Since our temperature on a cool spring day was 13.0°C, our new temperature must be
= 35.14°C
Answer:

Explanation:
We apply Newton's second law at the crate :
∑F = m*a (Formula 1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Data:
m=90kg : crate mass
F= 282 N
μk =0.351 :coefficient of kinetic friction
g = 9.8 m/s² : acceleration due to gravity
Crate weight (W)
W= m*g
W= 90kg*9.8 m/s²
W= 882 N
Friction force : Ff
Ff= μk*N Formula (2)
μk: coefficient of kinetic friction
N : Normal force (N)
Problem development
We apply the formula (1)
∑Fy = m*ay , ay=0
N-W = 0
N = W
N = 882 N
We replace the data in the formula (2)
Ff= μk*N = 0.351* 882 N
Ff= 309.58 N
We apply the formula (1) in x direction:
∑Fx = m*ax , ax=0
282 N - 309.58 N = 90*a
a= (282 N - 309.58 N ) / (90)
a= - 0.306 m/s²
Kinematics of the crate
Because the crate moves with uniformly accelerated movement we apply the following formula :
vf²=v₀²+2*a*d Formula (3)
Where:
d:displacement in meters (m)
v₀: initial speed in m/s
vf: final speed in m/s
a: acceleration in m/s²
Data
v₀ = 0.850 m/s
d = 0.75 m
a= - 0.306 m/s²
We replace the data in the formula (3)
vf²=(0.850)²+(2)( - 0.306 )(0.75 )

