nobody cares play a better game
The resolution<span> of a </span>microscope is the smallest resolvable distance between two objects. It is <span>defined as the shortest distance between two points on a specimen and the observer can still distinguish them.
</span>The wavelength is a determining and limiting factor in the degree of resolution afforded by the microscope. The relationship between the wavelength and the resolution is:
<span>Shorter wavelengths yield higher resolution </span>and visa versa.
Acceleration points in the same direction as the net force, so to the left.
The direction of velocity can't be determined from this information alone, though. If the object is at rest, it will being moving to the left. If the object is already moving to the left, it will continue doing so and speed up. If it starts off moving to the right, it will continue to move to the right but eventually slow to a stop before starting to move to the left. There are more cases to consider if you're talking about motion in more than one dimension.
Answer:
This formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire. Shows there is an inverse relationship between Resistance and Area of the wire.
Explanation:
A simple way to explain the physics behind such an electrical code is to compare the flow of current through wires to the flow of water through pipes, they are similar in any respect. The resistance to the flow of current in an electric circuit is similar to the frictional experienced by water when flowing through water pipes. Just as water will flow easily with little resistance through a water pipe with the larger cross-sectional area than one with a smaller cross-sectional area, in the same way, wires with larger cross-sectional area will allow the flow of larger amount of current compared to wires with smaller cross-sectional area assuming all other variables are the same.
From the formula R =ρL/A
Where R = resistance of wire, ρ = resistivity of the wire and A = area of the wire
We can see that the resistance and area of the wire have an inverse relationship. An increase in the area of the wire will lead to a decrease in the resistance of the wire.