Answer:
The mass will be 90.91 kilograms, we can’t figure out the weight without knowing how much gravity is on the other planet.
Explanation:
Mass is the amount of substance a matter contains. The more the substance a matter contains, the more massive it becomes. The mass of an object is the same everywhere in the universe. Therefore, the cube will have the same mass of 90.91Kg in another planet.
Weight is a function of mass and the force of gravity on such a body. The weight of a body relies on the prevailing acceleration due to gravity in a particular place. Some places have gravity higher than that on earth and so they will have more weight. This is why we can't figure out weight without knowing the gravity in the other planet.
Answer:

Explanation:
Hello there!
In this case, we can identify the solution to this problem via the Dalton's rule because the partial pressure of helium is given by:

Whereas the mole fraction of helium is calculated by firstly obtaining the moles and then the mole fraction:

Then, we calculate the partial pressure as shown below:

Best regards!
Answer:
S = 0.788 g/L
Explanation:
The solubility product (Kps) is an equilibrium solubization constant, which can be calculated by the equation:
![Kps = \frac{[product]^x}{[reagent]^y}](https://tex.z-dn.net/?f=Kps%20%3D%20%5Cfrac%7B%5Bproduct%5D%5Ex%7D%7B%5Breagent%5D%5Ey%7D)
Where x and y are the stoichiometric coefficients of the product and the reagent, respectively. Because of the aggregation form, the concentration of solids is always equal to 1 for use in this equation.
Analyzing the equation, we see that for 1 mol of
is necessary 2 mols of
, so if we call "x" the molar concentration of
, for
we will have 2x, so:
![Kps = [Fe^{+2}].[F^-]^2\\\\2.36x10^{-6} = x(2x)^2\\\\2.36x10^{-6} = 4x^3\\\\x^3 = 5.9x10^{-7}\\\\x = \sqrt[3]{5.9x10^{-7}} \\\\x = 8.4x10^{-3} mol/L](https://tex.z-dn.net/?f=Kps%20%3D%20%5BFe%5E%7B%2B2%7D%5D.%5BF%5E-%5D%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%20x%282x%29%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%204x%5E3%5C%5C%5C%5Cx%5E3%20%3D%205.9x10%5E%7B-7%7D%5C%5C%5C%5Cx%20%3D%20%5Csqrt%5B3%5D%7B5.9x10%5E%7B-7%7D%7D%20%5C%5C%5C%5Cx%20%3D%208.4x10%5E%7B-3%7D%20mol%2FL)
So, to calculate the solubility (S) of FeF2, which is in g/L, we multiply this concentration by the molar mass of FeF2, which is:
Fe = 55.8 g/mol
F = 19 g/mol
FeF2 = Fe + 2xF = 55.8 + 2x19 = 93.8 g/mol
So,
[tex]S = 8.4x10^{-3}x93.8
S = 0.788 g/L
Hello!
1.00 L of a gas at STP is compressed to 473 mL. What is the new pressure of gas?
- <u><em>We have the following data:</em></u>
Vo (initial volume) = 1.00 L
V (final volume) = 473 mL → 0.473 L
Po (initial pressure) = 1 atm (pressure exerted by the atmosphere - in STP)
P (final pressure) = ? (in atm)
- <u><em>We have an isothermal transformation, that is, its temperature remains constant, if the volume of the gas in the container decreases, so its pressure increases. Applying the data to the equation Boyle-Mariotte, we have:</em></u>






<u><em>Answer: </em></u>
<u><em>The new pressure of the gas is 2.11 atm </em></u>
___________________________________

Out of the options, the best indicator is a color change since it is the only one that can't really be blamed on a physical change. you will eventually notice that during qualitative labs and some quantitative labs, usually the thing that you are looking for is either color change or the production of a precipitate to indicate the presence of a chemical reaction