The molar mass of citric acid (c6h8o7) is 192.124g/mol
The molar mass of baking soda (nahco3) is 84.007g/mol
The molar mass of a chemical compound is defined as the mass of a sample of that compound divided by the amount of substance in that sample and is measured in moles. Molar mass is a mass property, not a molecular property of a substance.
Molar mass is the mass of 1 mole of the sample. To find the molar mass, add up the atomic masses (atomic weights) of all the atoms in the molecule. Use the masses listed in the periodic table or atomic weight table to determine the atomic mass of each element.
Learn more about molar mass here:brainly.com/question/15476873
#SPJ1
Answer:
look in the explanation part
Explanation:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. This law means that energy can neither be created nor destroyed; rather, it can only be transformed or transferred from one form to another.
Answer:
I think that the trend that would be seen in the time column of the data table would be that the number of seconds would increase. I know this because for each flask, the concentration of sodium thiosulfate decreases, since less of it is being mixed with more water. Also, when the concentration of a substance decreases, then the reaction rate also decreases, as there will be fewer collisions with sulfuric acid if there are fewer moles of sodium thiosulfate. When there are fewer collisions in a reaction, the reaction itself will take longer, and so when the sodium thiosulfate is diluted, the reaction takes more time.
Explanation:
<em>I verify this is correct. </em>