Answer:
v = 37.9 ml
Explanation:
Given data:
Mass of compound = 1.56 kg
Density = 41.2 g/ml
Volume of compound = ?
Solution:
First of all we will convert the mass into g.
1.56 ×1000 = 1560 g
Formula:
D=m/v
D= density
m=mass
V=volume
v = m/d
v = 1560 g / 41.2 g/ml
v = 37.9 ml
Answer:
The given statement is false.
Explanation:
Displacement is a vector quantity which represent shortest distance form initial position to final position.
Velocity of an object is defined as ratio of displacement of object to that of the time taken by object to move from its initial position to final position.
In displacement vs time graph the slope of the graph represent the velocity. Whereas slope of velocity vs time graph gives acceleration.
Answer:
Option (D) is definitely the answer.
Explanation:
Before going further, it is important to know what buffers and pH represent, which are keywords to answering this question.
Buffers is a special solution that can withstand or resist changes due to pH levels which may be as a result of an introduction of acidic or basic components into the blood. In other words, they maintain the stability of pH level in the human blood.
pH blood levels on the other hand, can be grouped into three: acidity, neutrality and alkalinity. Using a pH scale, one can determine its current level. In the human blood the pH level is near neutral and needs to be on a level near 7.4 in order to avoid a high rise or a drastic fall even if acidic or basic components come in or departs the blood stream.
Therefore, if one of the buffers that contributes to pH stability in human blood is carbonic acid, which is as a result of a combination of carbon dioxide and water in the blood stream. On getting to the lungs it is converted to water and subsequently released as waste. Maintaining this stability will definitely be to decrease the concentration of carbonic acid and increase that of water instead.