The name of the configuration management procedure that involves the collection of information about a system under normal operating conditions is Baselining.
<h3>What is Baselining?</h3>
Baselining is a management process used to analyze a collection of information about a particular system.
This procedure (Baselining) is well known to analyze computer performance in a given network.
In conclusion, the name of the configuration management procedure that involves the collection of information about a system under normal operating conditions is Baselining.
Learn more about Baselining here:
brainly.com/question/25836560
#SPJ1
Answer:
= 19
ΔG° of the reaction forming glucose 6-phosphate = -7295.06 J
ΔG° of the reaction under cellular conditions = 10817.46 J
Explanation:
Glucose 1-phosphate ⇄ Glucose 6-phosphate
Given that: at equilibrium, 95% glucose 6-phospate is present, that implies that we 5% for glucose 1-phosphate
So, the equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)


= 19
The formula for calculating ΔG° is shown below as:
ΔG° = - RTinK
ΔG° = - (8.314 Jmol⁻¹ k⁻¹ × 298 k × 1n(19))
ΔG° = 7295.05957 J
ΔG°≅ - 7295.06 J
b)
Given that; the concentration for glucose 1-phosphate = 1.090 x 10⁻² M
the concentration of glucose 6-phosphate is 1.395 x 10⁻⁴ M
Equilibrium constant
can be calculated as:
![= \frac{[glucose-6-phosphate]}{[glucose-1-[phosphate]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5Bglucose-6-phosphate%5D%7D%7B%5Bglucose-1-%5Bphosphate%5D%7D)

0.01279816514 M
0.0127 M
ΔG° = - RTinK
ΔG° = -(8.314*298*In(0.0127)
ΔG° = 10817.45913 J
ΔG° = 10817.46 J
Answer:
The sum of the coefficients in the balanced equation is 11
Explanation:
A reaction where an organic compound reacts with oxygen to produce carbon dioxide and water is called combustion.
The balance reaction of combustion for methanol is:
2CH₃OH (l) + 3O₂(g) → 2CO₂(g) + 4H₂O (g)
Coefficients from stoichiometry are 2, 3, 2 and 4
Sum = 2 + 3 + 2 + 4 = 11
Answer:

Explanation:
A mole is any quantity of a substance that contains 6.02 × 10²³ particles. At standard temperature and pressure, or STP, 1 mole of as is equal to 22.4 liters. This is true for any gas, regardless of the specific kind.
Although it is not specified, we can assume this gas is at STP. Let's set up a ratio using this information: 22.4 L/mol

Multiply by the given number of liters: 12

Flip the ratio so the liters of chlorine cancel.




The original measurement of liters has 2 significant figures, so our answer must have the same.
For the number we found, that is the hundredth place.
The 5 in the thousandth place tells us to round the 3 up to a 4.

12 liters of chlorine gas at STP is approximately <u>0.54 moles of chlorine gas.</u>
NH₄Cl → NH₄⁺ + Cl⁻
NH₄⁺ (the ammonium cation)