Answer : The balanced chemical equation will be:
(i)
(ii)
Explanation :
Balanced chemical equation : It is defined as the equation in which total number of individual atoms on the reactant side is equal to the total number of individual atoms on product side.
Part (i):
The balanced chemical equation will be:
This reaction is a single displacement reaction in which most reactive element (potassium) displaces the least reactive element (hydrogen) form their solution.
Part (ii):
The balanced chemical equation will be:
This reaction is a single displacement reaction in which most reactive element (zinc) displaces the least reactive element (magnesium) form their solution.
Answer:
Please mark me brainliest. the answer is
Explanation:
The problem is that the desalination of water requires a lot of energy. Salt dissolves very easily in water, forming strong chemical bonds, and those bonds are difficult to break. Energy and the technology to desalinate water are both expensive, and this means that desalinating water can be pretty costly.
0.114 mol/l
The equilibrium equation will be:
Kc = ([Br2][Cl2])/[BrCl]^2
The square factor for BrCl is due to the 2 coefficient on that side of the equation.
Now solve for BrCl, substitute the known values and calculate.
Kc = ([Br2][Cl2])/[BrCl]^2
[BrCl]^2 * Kc = ([Br2][Cl2])
[BrCl]^2 = ([Br2][Cl2])/Kc
[BrCl] = sqrt(([Br2][Cl2])/Kc)
[BrCl] = sqrt(0.043 mol/l * 0.043 mol/l / 0.142)
[BrCl] = sqrt(0.001849 mol^2/l^2 / 0.142)
[BrCl] = sqrt(0.013021127 mol^2/l^2)
[BrCl] = 0.114110152 mol/l
Rounding to 3 significant figures gives 0.114 mol/l
Answer:
Sorry
Explanation:
Sorry this is not chemistry but I always try to answer but this time I can't I am so so sorry