Answer:
The question is incomplete, below is the complete question "A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector r with arrow = (2.00 m)i hat − (3.00 m)j + (2.00 m)k, the force is F with arrow = Fxi hat + (7.00 N)j − (5.00 N)k and the corresponding torque about the origin is vector tau = (4 N · m)i hat + (10 N · m)j + (11N · m)k.
Determine Fx."

Explanation:
We asked to determine the "x" component of the applied force. To do this, we need to write out the expression for the torque in the in vector representation.
torque=cross product of force and position . mathematically this can be express as

Where
and the position vector

using the determinant method to expand the cross product in order to determine the torque we have
![\left[\begin{array}{ccc}i&j&k\\2&-3&2\\ F_{x} &7&-5\end{array}\right]\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C2%26-3%262%5C%5C%20F_%7Bx%7D%20%267%26-5%5Cend%7Barray%7D%5Cright%5D%5C%5C%5C%5C)
by expanding we arrive at

since we have determine the vector value of the toque, we now compare with the torque value given in the question

if we directly compare the j coordinate we have

I hope the wire is not wound too tightly around the bar magnet.
The device will generate electrical energy when the bar magnet
is moving in or out of the coil of wire.
Answer:
33.6371 m
Explanation:
t = Time taken
u = Initial velocity = 20.3 m/s
v = Final velocity
s = Displacement
a = Acceleration = -7 m/s²
Distance traveled in the 0.207 seconds
Distance = Speed × Time
⇒Distance = 20.3×0.207 = 4.2021 m
Equation of motion

Distance traveled by the car while braking is 29.435 m
Total distance measured from the point where the driver first notices the red light is 29.435+4.2021 = 33.6371 m
Answer: Partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.
Explanation:
The partial pressure of a gas is given by Raoult's law, which is:

where,
= partial pressure of substance A
= total pressure
= mole fraction of substance A
We are given:


Mole fraction of a substance is given by:

And,

Mole fraction of nitrogen is given as:

Molar mass of
= 28 g/mol
Molar mass of
= g/mol
Putting values in above equation, we get:


To calculate the mole fraction of xenon, we use the equation:



Thus partial pressure of nitrogen and xenon are 288mmHg and 548 mmHg respectively.