Answer: 40
Explanation:
= 34 + 5 * 1.2465
= 40.2325
= 40
The number of significant figures in the answer should be the same as the number with the least number of significant figures that any of the digits in the equation have.
32 has 2 significant figures so the answer has to be 2 significant figures which is 40.
Answer:
<h2>480</h2>
Explanation:
<h2>R=120÷0.25</h2><h2>R=480 ohms </h2>
because the unit for resistance is in ohms
Answer:
v₀ = 280.6 m / s
Explanation:
we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression

½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[152 ×0.78² / (0.012 +0.109) ]
v = 27.65 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 27.83 (0.012 +0.109) /0.012
v₀ = 280.6 m / s
Answer: Long Answer...
Explanation: Most of the time, chemical energy is released in the form of heat, and this transformation from chemical energy to heat, or thermal energy, is called an exothermic reaction. Next, there are two main types of mechanical energy: kinetic energy and potential energy.
Answer:
b) vary with the frequency of the light
Explanation:
The phone electric effect can be expressed as
K.E=(hv -W•)
Where K.E is the Kinectic energy
W• = work function of the metal
ν =frequency of the radiation
h = Planck's constat
Then, we can see that K.E is proportional linearly to "v" in the equation above.
Therefore, When light is directed on a metal surface, the kinetic energies of the photoelectrons vary with the frequency of the light