Beta particle cannot penetrate theory for into the solid because they have lower velocity
the two particles that are found in the center of an atom are protrons and neutrons.
The final velocity of the 14 kg object is 1.6 m/s in the same direction
Explanation:
We can solve this problem by using the law of conservation of momentum: the total momentum of the system must be conserved before and after the collision. Therefore, we can write

where:
is the mass of the first object
is the initial velocity of the first object
is the final velocity of the first object
is the mass of the second object
is the initial velocity of the second object
is the final velocity of the second object
Re-arranging the equation and substituting the values, we find:

And the direction is the same as the initial direction, since it has the same sign.
Learn more about conservation of momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
A meteor is B) an icy body with a long tail extending from it.
Explanation:
Meteors are very small dust particles that, when penetrating into the Earth's atmosphere, burn quickly by rubbing with the gases of the same. Some meteors, those with larger dimensions and appreciable weights, are brighter and can describe longer trajectories, showing longer.
In other words, the meteoroids, celestial bodies can vary in size between 100 micrometers up to 50 meters, they collide with the atmosphere of our planet and if the particles are of a small size, upon impact they enter combustion creating a flash, is what we know as meteor or shooting star. Therefore, the meteor is a luminous phenomenon that leaves behind a persistent trail.
So, <u><em>a meteor is B) an icy body with a long tail extending from it.</em></u>
Answer:
4.8 m/s
Explanation:
When she catches the train,
- They will have travelled the same distance.and
- Their speeds will be equal
The formula for the distance covered by the train is
d = ½at² = ½ × 0.40t² = 0.20t²
The passenger starts running at a constant speed 6 s later, so her formula is
d = v(t - 6.0)
The passenger and the train will have covered the same distance when she has caught it, so
(1) 0.20t² = v(t - 6.0)
The speed of the train is
v = at = 0.40t
The speed of the passenger is v.
(2) 0.40t = v
Substitute (2) into (1)
0.20t² = 0.40t(t - 6.0) = 0.40t² - 2.4 t
Subtract 0.20t² from each side
0.20t² - 2.4t = 0
Factor the quadratic
t(0.20t - 2.4) = 0
Apply the zero-product rule
t =0 0.20t - 2.4 = 0
0.20t = 2.4
(3) t = 12
We reject t = 0 s.
Substitute (3) into (2)
0.40 × 12 = v
v = 4.8 m/s
The slowest constant speed at which she can run and catch the train is 4.8 m/s.
A plot of distance vs time shows that she will catch the train 6 s after starting. Both she and the train will have travelled 28.8 m. Her average speed is 28.8 m/6 s = 4.8 m/s.