1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mazyrski [523]
3 years ago
11

An object thrown in the air has a velocity after t seconds that can be described by v(t) = -9.8t + 24 (in meters/second) and a h

eight h(t) = -4.9t 2 + 24t + 60 (in meters). The object has mass m = 2 kilograms. The kinetic energy of the object is given by K = __1 2mv2 , and the potential energy is given by U = 9.8mh. Find an expression for the total kinetic and potential energy K + U as a function of time. What does this expression tell you about the energy of the falling object?
Physics
1 answer:
marin [14]3 years ago
6 0

Answer and Explanation: Kinetic energy is related to movement: it is the energy an object possesses during the movement. it is calculated as:

K=\frac{1}{2}mv^{2}

For the object thrown in the air:

K=\frac{1}{2}.2.[v(t)]^{2}

K=(-9.8t+24)^{2}

K=96.04t^{2}-470.4t+576

Kinetic energy of the object as a function of time: K=96.04t^{2}-470.4t+576

Potential energy is the energy an object possesses due to its position in relation to other objects. It is calculated as:

U=mgh

For the object thrown in the air:

U=9.8.2.h(t)

U=9.8.2.(-4.9t^{2}+24t+60)

U=-96.04t^{2}+470.4t+1176

Potential energy as function of time: U=-96.04t^{2}+470.4t+1176

Total kinetic and potential energy, also known as mechanical energy is

TME = 96.04t^{2}-470.4t+576 + (-96.04t^{2}+470.4t+1176)

TME = 1752

The expression shows that total energy of an object thrown in the air is constant and independent of time.

You might be interested in
Help with i) and ii) pls >_
alina1380 [7]

Answer:

4 it the corrcert anser

Explanation:

4 0
3 years ago
Read 2 more answers
The asteroid 2007 VK184 has one chance in 2940 of hitting the Earth between the years 2048 and 2057. The asteroid is 130 meters
N76 [4]

Answer:

 The average death rate for this type of event is closest to 350 people per event.

Explanation:

Between the years 2048 and 2057

Is 10 years. Since there is only one chance of event between these years, there is no point to consider it.

The total number of events = 2940 chances.

average death rate per event = total number of dead people divided by total number of events of occurrence.

1000000/2940 = 340.134

The average death rate for this type of event is therefore closest to 350 people per event

4 0
3 years ago
A bag containing 0ºC ice is much more effective in absorbing energy than one containing the same amount of 0ºC water.
rosijanka [135]

Answer:

No temperature change occurs from heat transfer if ice melts and becomes liquid water (i.e., during a phase change). For example, consider water dripping from icicles melting on a roof warmed by the Sun. Conversely, water freezes in an ice tray cooled by lower-temperature surroundings.

Explanation:

Energy is required to melt a solid because the cohesive bonds between the molecules in the solid must be broken apart such that, in the liquid, the molecules can move around at comparable kinetic energies; thus, there is no rise in temperature. Similarly, energy is needed to vaporize a liquid, because molecules in a liquid interact with each other via attractive forces. There is no temperature change until a phase change is complete. The temperature of a cup of soda initially at 0ºC stays at 0ºC until all the ice has melted. Conversely, energy is released during freezing and condensation, usually in the form of thermal energy. Work is done by cohesive forces when molecules are brought together. The corresponding energy must be given off (dissipated) to allow them to stay together Figure 2.

The energy involved in a phase change depends on two major factors: the number and strength of bonds or force pairs. The number of bonds is proportional to the number of molecules and thus to the mass of the sample. The strength of forces depends on the type of molecules. The heat Q required to change the phase of a sample of mass m is given by

Q = mLf (melting/freezing,

Q = mLv (vaporization/condensation),

where the latent heat of fusion, Lf, and latent heat of vaporization, Lv, are material constants that are determined experimentally.

6 0
3 years ago
A package of aluminum foil contains 50. ft2 of foil, which weighs approximately 6.0 oz. Aluminum has a density of 2.70 g/cm3. Wh
SIZIF [17.4K]

Answer:

1.36 x 10^-3 cm

Explanation:

Area = 50 ft^2 = 46451.5 cm^2

mass = 6 oz = 170.097 g

density = 2.70 g/cm^3

Let t be the thickness of foil in cm.

mass = volume x density

mass = area x thickness x density

170.097 = 46451.5 x t x 2.70

t = 1.36 x 10^-3 cm

Thus, the thickness of aluminium foil is 1.36 x 10^-3 cm.

3 0
3 years ago
It would be really helpful if u help me solving this question. PLEASE!!!
sweet [91]

Answer: The students will determine the two fixed points of the thermometer:

Lower fixed point = 0 degree Celsius

Upper fixed point = 100 degree Celsius

Then divide the thermometer with equal intervals

The room temperature will be the point at which the themometric substance remains constant when rising from ice point.

Explanation:

Apparatus available:

Unmarked thermometer

250 cm3 glass beaker

crushed ice 

water

heatproof mat 

clamp, boss and stand

meter rule

Added apparatus

Bunsen burner

Stirrer

Method

The students will determine the two fixed points of the thermometer:

Lower fixed point = 0 degree Celsius

Upper fixed point = 100 degree Celsius

Then divide the thermometer with equal intervals

Procedures

Set up the apparatus of illustrated in the attached figure.

Immerse the unmarked thermometer into the ice in the beaker.

When the level indicated by the thermometric substance remains steady after some time, a mark will be made at that point. This mark will corresponds to the ice point (lower fixed point) and is assigned the value of 0 °C.

You may add little water and continue to stir gently.

The themometric substance will start to rise and stop when it reaches room temperature. Mark the point but do not assign any value

Place the beaker on bunsen burner and boil the water. The themometric substance will continue to rise and remain constant at upper fixed point

This mark will corresponds to the steam point (upper fixed point) and is assigned the value of 100 °C.

Divide between the lower fixed point and upper fixed point into equal intervals. Then you can see the value of room temperature.

7 0
3 years ago
Other questions:
  • Find the mass if the force is 18 N and the acceleration is 2 m/s2.
    5·1 answer
  • Most tornadoes form as a result of
    7·1 answer
  • You are making cookies that call for 3 tablespoons of molasses, but you are having trouble measuring out the thick, syrupy liqui
    14·2 answers
  • Which equation represents the total energy of a system?
    10·1 answer
  • Aluminum hydroxide is a common _________​
    13·1 answer
  • In a region of space, a magnetic field points in the +x-direction (toward the right). Its magnitude varies with position accordi
    14·1 answer
  • Sharks are most common near coral reefs, because there are more fish there to eat.
    13·2 answers
  • A projectile is shot a cliff of 20m high, at an angle of 60o with respect to the horizontal, and it lands on the ground 8 second
    13·1 answer
  • Three people push a piano on wheels with forces of 130 N to the right, 150 N to the left, and 165 N to the right. What is the st
    10·1 answer
  • 2. Two spherical objects with radii 1 m have masses of 1.5 kg and 8.5 kg. They are separated by a
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!