7. PE=0.5×700n/m×0.9m^2
0.9^2=0.81m
0.5×700×0.81= 283.5J
8. 2000=0.5×(x)×1.5m^2
1.5^2= 0.25
0.25×0.5=0.125
2000=0.125 (x)
2000/0.125=x
x=16000 n/m
9. 4000=0.5 (375 n/m)×(x)^2
0.5×187.5 (x)
4000/187.5=21.3333333333
(a) The spring stiffness constant of the spring is 18,392 N/m.
(b) The time the car was in contact with the spring before it bounces off in the opposite direction is 0.23 s.
<h3>Kinetic energy of the car</h3>
The kinetic energy of the car is calculated as follows;
K.E = ¹/₂mv²
K.E = ¹/₂ x 950 x 22²
K.E = 229,900 J
<h3>Stiffness constant of the spring</h3>
The stiffness constant of the spring is calculated as follows;
K.E = U = ¹/₂kx²
k = 2U/x²
k = (2 x 229,900)/(5)²
k = 18,392 N/m
<h3>Force exerted on the spring</h3>
F = kx
F = 18,392 x 5
F = 91,960 N
<h3>Time of impact</h3>
F = mv/t
t = mv/F
t = (950 x 22)/(91960)
t = 0.23 s
Learn more about spring constant here: brainly.com/question/1968517
#SPJ4
Answer: coefficient of static friction
= 0.31
Explanation: Since they negotiate the curve without skidding, the frictional force (F1) equals the centripetal force (F2).
F1= uN
F2 = M*(v²/r)
M is the combined mass 450kg
V is the velocity 18m/s
r is the radius 106m
N is the normal reaction 4410N
u is the coefficient of static friction
Making u subject of the formula we have that,
u = {450*(18²/106)} /4410
=1375.47/4410
=0.31
NOTE: coefficient of friction is dimensionless. It as no Unit.
Answer:
The heating element of the heater is made up of alloy which has very high resistance so when current flows through the heating element, it becomes too hot and glows red. But the resistance of cord which is usually of copper or aluminum is very low so it does not glow.
The correct answer is C) frequency.
In fact, the frequency is the number of wave crests (or pulses) per seconds. In our problem, the machine that produces the wave pulses two times per second, so this is exactly the frequency of the compression wave.