Answer:
Components of the electron transport chain (ordered by electronegativity from least electronegative to most electronegative):
NADH dehydrogenase >> Coenzyme Q >> Cytochrome b-c1 complex >> Cytochrome c >> Cytochrome oxidase complex > O2
Explanation:
The electron transport chain transfers electrons from donors to acceptors via redox reactions (i.e., where reduction and oxidation occur together), and couples the transfer of electrons with proton transfer (H+ ions) across the membrane. In the electron transport chain, the electrons are transferred from NADH dehydrogenase NADH to oxygen (O2) through a series of transmembrane complexes: NADH-Q oxidoreductase, Q-cytochrome c oxidoreductase and cytochrome c oxidase. In the first place, the reduced form of coenzyme Q (ubiquinone) transports the electrons from the NADH-Q oxidoreductase to the Q-cytochrome c oxidoreductase complex (Cytochrome b-c1 complex). Second, the cytochrome c transports the electrons from this complex (i.e., Cytochrome b-c1 complex) to the Cytochrome oxidase complex, this being the last component in the electron transport chain that is responsible to catalyze the reduction of O2.
About 8.7 Million Species
Uhhh no espice español sorry
Answer:
breed, while the ones not so well adapted die off.
D. is the heterotrophism hypothesis, but it is questionable that it is the "strongest" hypothesis. The alternately proposed option is autotrophism, which is the ability of an organism to obtain its own nutrients without relying on other organic materials. The potential advantage of autotrophism is its relatively simpler structure, making a simpler organism viable because it is potentially less complex and "easier to create."