Not quite sure what you're asking, but I think what you're looking for is 'Native Species'.
Answer:
H₂
Explanation:
To solve this question we must find, as first, find the molar mass of the homonuclear diatomic gas using Graham's law. With the molar mass we can identify this gas
<em>Graham's law:</em>

<em>Where V is the speed of the gases and m the molar mass of those:</em>
<em>As Va is 3.98 times Vb (And mB is molar mass of oxygen gas = 32g/mol)</em>

15.84 = 32g/mol / mA
mA = 2.02g/mol
As is a homonuclear diatomic gas, the molar mass of the atom is 1.01g/mol. Thus, the gas is:
<h3>H₂</h3>
Answer:
Pyridine solution has a greater concentration of hydroxide ions.
Explanation:
The pOH of the solution is defined as negative logarithm of hydroxide ion concentration in a solution.
![pOH=-\log [OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%20%5BOH%5E-%5D)
- Higher the value of pOH lessor will be the hydroxide ion concentration and higher the concentration of hydrogen ions in the solution .
- Lower the value of pOH higher will be the hydroxide ion concentration and lower the concentration of hydrogen ions in the solution.
1) The pOH of the methylamine = 6.8
![6.8=-\log[OH^-]](https://tex.z-dn.net/?f=6.8%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=1.5848\times 10^{-7} M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.5848%5Ctimes%2010%5E%7B-7%7D%20M)
2) The pOH of the pyridine = 6.0
![6.0=-\log[OH^-]](https://tex.z-dn.net/?f=6.0%3D-%5Clog%5BOH%5E-%5D)
![[OH^-]=0.000001 M=1.0\times 10^{-6} M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D0.000001%20M%3D1.0%5Ctimes%2010%5E%7B-6%7D%20M)
Pyridine solution has a greater concentration of hydroxide ions than the solution of methylamine.
Answer:
Compound D is CH3OPO3 is the best answer
Explanation: