Answer:
Mo(CO)5 is the intermediate in this reaction mechanism.
Explanation:
The reaction mechanism describes the sequence of elementary reactions that must occur to go from reactants to products. Reaction intermediates are formed in one step and then consumed in a later step of the reaction mechanism.
In this reaction mechanism, Mo(CO)5 is the product of 1st reaction and then it is used as a reactant in 2nd reaction. So, Mo(CO)5 is the reaction intermediates.
The overall balanced equation would be,
Mo(CO)6 + P(CH3) ↔ CO + Mo(CO)5 + P(CH3)3
Answer:
a. Volatile.
b. Air foil.
c. Sash.
d. Work surface.
Explanation:
In science, matter can be defined as anything that has mass and occupies space. Any physical object that is found on earth is typically composed of matter. Matter are known to be made up of atoms and as a result has the property of existing in states.
Generally, matter exists in three (3) distinct or classical phases and these are;
I. Solid.
II. Liquid.
III. Gas.
Matching the terms with their respective definition, we have;
a. Volatile: A characteristic that describes substances that evaporate readily, producing large amounts of vapors.
b. Air foil: the front vent of a fume hood, which helps maintain proper air circulation.
c. Sash: the glass panel in front of the fume hood that shields the user from fumes and other hazards.
d. Work surface: the horizontal, flat area of a fume hood upon which experiments are carried out.
Answer:
11.33
Explanation:
-log(2.3x10^-3) = 2.67
14-2.67
- Hope this helped! Let me know if you need a further explanation.
Answer:
Explanation: When solutions of potassium iodide and lead nitrate are combined?
The lead nitrate solution contains particles (ions) of lead, and the potassium iodide solution contains particles of iodide. When the solutions mix, the lead particles and iodide particles combine and create two new compounds, a yellow solid called lead iodide and a white solid called potassium nitrate. Chemical Equation Balancer Pb(NO3)2 + KI = KNO3 + PbI2. Potassium iodide and lead(II) nitrate are combined and undergo a double replacement reaction. Potassium iodide reacts with lead(II) nitrate and produces lead(II) iodide and potassium nitrate. Potassium nitrate is water soluble. The reaction is an example of a metathesis reaction, which involves the exchange of ions between the Pb(NO3)2 and KI. The Pb+2 ends up going after the I- resulting in the formation of PbI2, and the K+ ends up combining with the NO3- forming KNO3. NO3- All nitrates are soluble. ... (Many acid phosphates are soluble.)