The number of hydrogen atoms that are in 4.40 mol of ammonium sulfide is 2.12 x10^25 atoms
calculation
find the number of moles of Hydrogen in ammonium sulfide (NH4)2S
that is 4.40 x number of hydrogen atoms in (NH4)2S ( 4x2= 8 atoms)
moles is therefore= 4.40 x8= 35.2 moles
by use of Avogadro's law constant
that is 1mole = 6.02 x10^23 atoms
35.2 moles=?
by cross multiplication
{35.2 moles x 6.02 x10^23} /1 mole = 2.12 x10^25 atoms
Answer : The reagent present in excess and remains unreacted is, 
Solution : Given,
Moles of
= 3.00 mole
Moles of
= 2.00 mole
Excess reagent : It is defined as the reactants not completely used up in the reaction.
Limiting reagent : It is defined as the reactants completely used up in the reaction.
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 2 moles of
react with 1 mole of 
So, 3.00 moles of
react with
moles of 
From this we conclude that,
is an excess reagent because the given moles are greater than the required moles and
is a limiting reagent and it limits the formation of product.
Hence, the reagent present in excess and remains unreacted is, 
According to the question, the determined melting point of the compound is 112.5-113.0oC. When the solidified compound was retried, the melting point was found to be 133.6-154.5oC. This greater range higher than 112°C is caused by reusing samples leads to errors.
A pure sample is known by its sharp melting point. A pure sample does not melt over a large range. We can see this in the predetermined melting points of the pure sample(112.5-113.0oC).
However, reusing a sample introduces errors because the pure sample may become contaminated leading to a larger and higher range of melting point (133.6-154.5oC) which is far above 112°C.
Learn more: brainly.com/question/5325004
Answer:
ummmmmmmmmmmmmmmm..mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
Explanation:
ummmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm.................... candyunicorns1999 has left the chat
Answer: Option (b) is the correct answer.
Explanation:
Kinetic energy is defined as the energy obtained by the molecules of an object due to their motion.
Also, it is known that kinetic energy is directly proportional to temperature.
Mathematically, K.E = 
where, T = temperature
Whereas potential energy is defined as the energy obtained by an object due to its position.
Mathematically, P.E = mgh
where, m = mass
g = acceleration due to gravity
h = height
Therefore, in the given curve when temperature remains constant then kinetic energy of molecules will also remain.
Hence, we can conclude that the segment QR represents an increase in the potential energy, but no change in the kinetic energy.