1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
4 years ago
6

What is a large underground opening formed by weathering and erosion

Physics
2 answers:
nikitadnepr [17]4 years ago
4 0

it is either a cavern or a sinkhole.
nexus9112 [7]4 years ago
4 0
A tunnel or cave 
 because it is a whole in the ground
You might be interested in
The engine starter and a headlight of a car are connected in parallel to the 12.0-V car battery. In this situation, the headligh
stepladder [879]

Answer:

The total power they will consume in series is approximately 2.257 W

Explanation:

The connection arrangement of the headlight and the engine starter = Parallel to the battery

The voltage of the battery, V = 12.0 V

The power at which the headlight operates in parallel, P_{headlight} = 38 W

The power at which the kick starter operates in parallel, P_{kick \ starter} = 2.40 kW

We have;

P = V²/R

Where;

R = The resistance

V = The voltage = 12 V (The voltage is the same in parallel circuit)

For the headlight, we have;

R₁ = V²/P_{headlight}  = 12²/38 = 72/19

R₁ = 72/19 Ω

For the kick starter, we have;

R₂ = V²/P_{kick \ starter} = 12²/2.4 = 60

R₂ = 60 Ω

When the headlight and kick starter are rewired to be in series, we have;

Total resistance, R = R₁ + R₂

Therefore;

R = ((72/19) + 60) Ω = (1212/19) Ω

The current flowing, I = V/R

∴ I = 12 V/(1212/19) Ω = (19/101) A

We note that power, P = I²R

In the series connection, we have;

P_{headlight} = I² × R₁

∴ P_{headlight} = ((19/101) A)² × 72/19 Ω = 1368/10201 W ≈ 0.134 W

The power at which the headlight operates in series, P_{headlight, S} ≈ 0.134 W

P_{kick \ starter} = ((19/101) A)² × 60 Ω = 21660/10201 W ≈ 2.123 W

The power at which the kick starter operates in series, P_{kick \ starter, S} ≈ 2.123 W

The total power they will consume, P_{Total} = P_{headlight, S} + P_{kick \ starter, S}

Therefore;

P_{Total} ≈ 0.134 W + 2.123 W = 2.257 W

4 0
3 years ago
Charge q1 = +2.00 μC is at -0.500 m along the x axis. Charge q2 = -2.00 μC is at 0.500 m along the x axis. Charge q3 = 2.00 μC i
Kobotan [32]

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons.

<h3>How to calculate the electrical force experimented on a particle</h3>

The vector <em>position</em> of each particle respect to origin are described below:

\vec r_{1} = (-0.500, 0)\,[m]

\vec r_{2} = (+0.500, 0)\,[m]

\vec r_{3} = (0, +0.500)\,[m]

Then, distances of the former two particles particles respect to the latter one are found now:

\vec r_{13} = (+0.500, +0.500)\,[m]

r_{13} = \sqrt{\vec r_{13}\,\bullet\,\vec r_{13}} = \sqrt{(0.500\,m)^{2}+(0.500\,m)^{2}}

r_{13} =\frac{\sqrt{2}}{2}\,m

\vec r_{23} = (-0.500, +0.500)\,[m]

r_{23} = \sqrt{\vec r_{23}\,\bullet \,\vec r_{23}} = \sqrt{(-0.500\,m)^{2}+(0.500\,m)^{2}}

r_{23} =\frac{\sqrt{2}}{2}\,m

The resultant force is found by Coulomb's law and principle of superposition:

\vec R = \vec F_{13}+\vec F_{23} (1)

Please notice that particles with charges of <em>same</em> sign attract each other and particles with charges of <em>opposite</em> sign repeal each other.

\vec R = \frac{k\cdot q_{1}\cdot q_{3}}{r_{13}^{2}}\cdot \vec u_{13}  +\frac{k\cdot q_{2}\cdot q_{3}}{r_{23}^{2}}\cdot \vec u_{23} (2)

Where:

  • k - Electrostatic constant, in newton-square meters per square Coulomb.
  • q_{1}, q_{2}, q_{3} - Electric charges, in Coulombs.
  • r_{13}, r_{23} - Distances between particles, in meters.
  • \vec u_{13}, \vec u_{23} - Unit vectors, no unit.

If we know that k = 8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}}, q_{1} = 2\times 10^{-6}\,C, q_{2} = 2\times 10^{-6}\,C, q_{3} = 2\times 10^{-6}\,C, r_{13} =\frac{\sqrt{2}}{2}\,m, r_{23} =\frac{\sqrt{2}}{2}\,m, \vec u_{13} = \left(-\frac{\sqrt{2}}{2}, - \frac{\sqrt{2}}{2}  \right) and \vec u_{23} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right), then the vector force on charge q_{3} is:

\vec R = \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + \frac{\left(8.988\times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} \right)\cdot (2\times 10^{-6}\,C)\cdot (2\times 10^{-6}\,C)}{\left(\frac{\sqrt{2}}{2}\,m \right)^{2}} \cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)

\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}  \right)\,[N]

\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N]

And the magnitude of the <em>electrical</em> force on charge q_{3} (R), in newtons, due to the others is found by Pythagorean theorem:

R = 0.102\,N

The magnitude of <em>electrical</em> force on charge q_{3} due to the others is 0.102 newtons. \blacksquare

To learn more on Coulomb's law, we kindly invite to check this verified question: brainly.com/question/506926

8 0
2 years ago
Convert 1 meter into millimeters
dedylja [7]

Answer:

1000

Explanation:

I learned this

7 0
4 years ago
Read 2 more answers
A ball thrown horizontally at 12.6 m/s from the roof of a building lands 20.0 m from the base of the building
S_A_V [24]

Answer:

1.59 seconds

12.3 meters

but if you are wise you will read the entire answer.

Explanation:

This is a good question -- if not a bit unusual. You should try and understand the details. It will come in handy.

Time

<u>Given</u>

a = 0 This is the critical point. There is no horizontal acceleration.

d = 20 m

v = 12.6 m/s

<u>Formula</u>

d = vi * t + 1/2at^2

<u>Solution</u>

Since the acceleration is 0, the formula reduces to

d = vi * t

20 = 12.6 * t

t = 20 / 12.6

t = 1.59 seconds.

It takes 1.59 seconds to hit the ground

Height of the building

<u>Givens</u>

t = 1.59 sec

vi = 0     Another critical point. The beginning speed vertically is 0

a = 9.8 m/s^2   The acceleration is vertical.

<u>Formula</u>

d = vi*t + 1/2 a t^2

<u>Solution</u>

d = 1/2 a*t^2

d = 1/2 * 9.8 * 1.59^2

d = 12.3 meters.

The two vi's are not to be confused. The horizontal vi is a number other other 0 (in this case 12.6 m/s horizontally)

The other vi is a vertical speed. It is 0.

7 0
3 years ago
Why are the shoes soles of fat people get worn out faster than those of thin people?
Leya [2.2K]
Less weight is why fat peoples souls wear out faster.
3 0
3 years ago
Other questions:
  • Which of the following gases is the heaviest?<br><br> O2<br> CH4<br> CO2<br> Cl2
    15·1 answer
  • If two objects collide and one is initially at rest, is it possible for both to be at rest after the collision? Is it possible f
    7·1 answer
  • True or False. If your skin is wet, the body's resistance to electric shocks increases.
    12·2 answers
  • Can positive force of energy be used against negative force of energy. To create continuum of movement.
    10·1 answer
  • Calculate the change in momentum of a 45 kg runner who starts out at 1 m/s and speeds up to 3 m/s. Which anser choice is correct
    13·1 answer
  • What is 0.002 represented by
    10·2 answers
  • What the opposite of suspension physical science physical science
    12·1 answer
  • A bicycle accelerates from rest to 6 m/s in 2 s. What is the bicycle's acceleration?
    11·2 answers
  • State and explain the principle of superposition of electrostatic force​
    14·1 answer
  • Negative attitudes that are tinged with fear, hatred, or suspicion is a definition of:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!