Explanation:
Given that,
Object distance u= -110 cm
Image distance v= 55 cm
We need to calculate the focal length for diverging lens
Using formula of lens

Put the value into the formula


The focal length of the diverging lens is 36.6 cm.
Now given a thin lens with same magnitude of focal length 36.6 cm is replaced.
Here, The object distance is again the same.
We need to calculate the image distance for converging lens
Using formula of lens

Here, focal length is positive for converging lens



The distance of the image is 54.85 cm from converging lens.
Hence, This is the required solution.
Answer:
Cause its scalar quantity
Explanation:
since speed does not take directions into consideration, it is considered to be a scalar quantity. On the other hand, the velocity of an object does not take into account direction, thus making it a vector quantity.
Answer:
6 m/s
Explanation:
12m / 2s = 6 m/s
Hope that's the answer you seek.
Answer:
Explanation:
Y = 5 Sin27( .2x-3t)
= 5 Sin(5.4x - 81 t )
Amplitude = 5 m
Angular frequency ω = 81
frequency = ω / 2π
= 81 / (2 x 3.14 )
=12.89
Wave length λ = 2π / k ,
k = 5.4
λ = 2π / 5.4
= 1.163 m
Phase velocity =ω / k
= 81 / 5.4
15 m / s.
The wave is travelling in + ve x - direction.
Answer:
SECOND LAW OF NEWTON
Explanation:
When the rocket fires the engines the gases leave at high speed and collide with the space station, transferring an impulse given by the expression
I = F t = Δp
As we can see this expression is a form of Newton's second law
F = m a
a = dv / dt
F = m dv / dt
F dt = m dv
p = mv
F dt = dp
Therefore the station moves through the SECOND LAW OF NEWTON