Answer:
<em>faster and at a higher luminosity and temperature.</em>
Explanation:
A protostar looks like a star but its core is not yet hot enough for fusion to take place. The luminosity comes exclusively from the heating of the protostar as it contracts. Protostars are usually surrounded by dust, which blocks the light that they emit, so they are difficult to observe in the visible spectrum.
A protostar becomes a main sequence star when its core temperature exceeds 10 million K. This is the temperature needed for hydrogen fusion to operate efficiently.
Stars above about 200 solar masses (Higher mass) generate power so furiously that gravity cannot contain their internal pressure. These stars blow themselves apart and do not exist for long if at all. A protostar with less than 0.08 solar masses never reaches the 10 million K temperature needed for efficient hydrogen fusion. These result in “failed stars” called brown dwarfs which radiate mainly in the infrared and look deep red in color. They are very dim and difficult to detect, but there might be many of them, and in fact they might outnumber other stars in the universe.
That is why higher mass protostars enter the main sequence at a <em>faster and at a higher luminosity and temperature.</em>
Answer:
Acceleration of the second particle at that moment is given as

Explanation:
As we know that both cars are connected by same spring
So on this system of two cars there is no external force
So we will have

now we have



now we have

so we have

Answer:
6.9066 × 10⁻⁵ m
Explanation:
For constructive interference, the expression is:
Where, m = 1, 2, .....
d is the distance between the slits.
The formula can be written as:
....1
The location of the bright fringe is determined by :
Where, L is the distance between the slit and the screen.
For small angle ,
So,
Formula becomes:
Using 1, we get:

Thus, the distance between the central maximum is 3.00 cm
First bright fringe , m = 1 occur at 3.00 / 2 = 1.50 cm
Since,
1 cm = 0.01 m
y = 0.0150 m
Given L = 2.00 m
λ = 518 nm
Since, 1 nm = 10⁻⁹ m
So,
λ = 518 × 10⁻⁹ m
Applying the formula as:

<u>⇒ d, distance between the slits = 6.9066 × 10⁻⁵ m</u>
Answer: The weight of the air displaced by the balloon is less than the volume of the balloon.
Explanation:
A hot air balloon is a cloth wrap that contains several thousand cubic meters of air inside (a large volume of air). The burner heats the liquid propane to a gaseous state to generate a huge flame, which can reach more than 3 meters, thus heating the air mass inside the balloon. In this way,<u> its density is modified with respect to the air that surrounds it</u>, because the hot air is lighter than the outside air (less dense), causing the balloon to rise and float.
Now, if we know that the density of a body
is directly proportional to its mass
and inversely proportional to its volume
:

We can deduce that <u>by increasing the volume of the body, its density will decrease.</u>
This is proof of <em><u>Archimedes' Principle</u></em>:
<em>A body totally or partially immersed in a fluid at rest, experiences a vertical upward thrust equal to the mass weight of the body volume that is displaced.</em>
In this case the fluid is the air outside. So, the warm air inside the balloon, being less dense, will weigh less than the outside air and therefore will receive an upward pushing force or thrust that will make the balloon ascend.
The motivation behind why the vertical stature of the stairs is the main thing measured is that it uncovers to us how much gravity is up against the individual and their weight, so we require this data to decide how much vitality and power we have to get up the stairs.