Answer:

Explanation:
When a spring is compressed, the force exerted by the spring is given by:

where
k is the spring constant
x is the compression of the spring
In this problem we have:
k = 52 N/m is the spring constant
x = 43 cm = 0.43 m is the compression
Therefore, the force exerted by the spring on the dart is

Now we can apply Newton' second law of motion to calculate the acceleration of the dart:

where
F = 22.4 N is the force exerted on the dart by the spring
m = 75 g = 0.075 kg is the mass of the dart
a is its acceleration
Solving for a,

Answer:
Please find the answer in the explanation
Explanation:
When you calculate the SLOPE of a line segment, what does the SLOPE represent? (Choose all that apply) the Distance traveled the Displacement the Velocity the Acceleration None of the above
The slope of any time graph can not give you distance or displacement except for position - time graph.
When you plot either distance or displacement against time, that is, distance time graph or displacement time graph, you can get speed or velocity as the slope of the line segment.
You can only acceleration as a slope in a line of best fit if velocity is plotted against time. That is, in a velocity time graph.
Answer:
yes
Explanation:
I think so because it not mention in the law
terminal velocity ... greater speed ... acc is 10m/s/s
Answer:
You pull on the oars. By the third law, the oars push back on your hands, but that’s irrelevant to the motion of the boat. The other end of each oar (the blade) pushes against the water. By the third law, the water pushes back on the oars, pushing the boat forward.