<span>We know that the momentum keeps constant in a inelastic collisions, so the product of mass and speed do not change:
m1 * v1 + m2 * v2 = m * v
1 * 1 + 5 * 0 = (1 + 5) * v
1 = 6 * v
v = 1/6 m/s
So the final speed of the 6 kg chunk will travel at 0.167 m/s</span>
Answer:
- It is vital for all known forms of life.
- It provides no calories nor organic nutrients.
- It forms precipitation in the form of rain and aerosols in the form of fog.
- It's chemical symbol is H₂O
Explanation:
HOPE THAT HELPS
PLEASE MARK AS BRAINLIEST
Answer:
0.911 atm
Explanation:
In this problem, there is no change in volume of the gas, since the container is sealed.
Therefore, we can apply Gay-Lussac's law, which states that:
"For a fixed mass of an ideal gas kept at constant volume, the pressure of the gas is proportional to its absolute temperature"
Mathematically:
where
p is the gas pressure
T is the absolute temperature
For a gas undergoing a transformation, the law can be rewritten as:
where in this problem:
is the initial pressure of the gas
is the initial absolute temperature of the gas
is the final temperature of the gas
Solving for p2, we find the final pressure of the gas:
Answer:
You drop a rock from rest out of a window on the top floor of a building, 30.0 m above the ground. When the rock has fallen 3.00 m, your friend throws a second rock straight down from the same window. You notice that both rocks reach the ground at the exact same time. What was the initial velocity of the ...... rest out of a window on the top floor of a building, 30.0m above the ground. ... You Notice That Both Rocks Reach The Ground At The Exact Same Time. ... You drop a rock from rest out of a window on the top floor of a building, 30.0m ... When the rock has fallen 3.20 m, your friend throws a second rock straight down from ...
Their 'degrees' are the same size. The difference between the Celsius
and Kelvin scales is their zero-point. Zero Kelvin is the absolute zero of
nature and Physics. Zero Celsius is the melting/freezing point of water,
273.15 higher than absolute zero.