Answer:
the correct answer is C
Explanation:
When we express that the scale is 1:30 we mean that the objects of the realization are reduced by a factor of 30 in the graph, for example a distance of 30 cm in the graph is represented by a distance of 1 cm.
Therefore something that in the graph has n value to bring it to real size must be multiplied by the scale.
Applying this to our case if there is
10 boulder on the chart
in reality there are #_boulder = 10 30
#_boulder = 300 boulder
so the correct answer is C
force=mass × acceleration
mass=force ÷ acceleration
acceleration=force ÷ mass
1. Vpa = 180m/s. @ 0 deg.
Vag = 40m/s @ 120 deg,CCW.
<span>
Vpg = Vpa + Vag,
Vpg = (180 + 40cos120) + i40sin120,
Vpg = 160 + i34.64,
Vpg=sqrt((160)^2 + (34.64)^2)=163.7m/s.
</span>
<span>2. tanA = Y / X = 34.64 / 160 = 0.2165,
A = 12.2 deg,CCW. = 12.2deg. North of
East. </span>
3. 1 hr = 3600s. <span>d = Vt = 163.7m/s * 3600s = 589,320m.
hope this helps</span>
Answer:
Explanation:
A novae in astronomy means an explosion in the white dwarf star which had tapped enough gas from a companion star,hence it releases an incredible amount of energy which is Over a million times brighter than it normal stars.
A super novae on the other hand is a cosmic explosion that can be a billion times brighter than the normal.
From this one can see that a perculiar similarity between a novae and super novae is that both generate huge explosion and bright Ness, and a major difference is super novae release huge amount of brightness and energy more than the novae
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4