Answer:
8.35 ×
kg
Explanation:
Remember the formula for heat:

You just need to solve for m, doing so you're left with:

Replace the variables with numbers and that's it.
Answer:
the object's mass is 50 kg
Explanation:
We use Newton's second law to solve for the mass:
F = m * a , then m = F / a
In our case, the acceleration is the gravitational acceleration on the planet, and the force is the weight of the object on the planet. So we get:
m = w / a = 650 N / 13 m/s^2 = 50 kg
Then, the object's mass is 50 kg.
Answer:
I know someone anwsered but it would be 400M
Explanation:
i initial velocity (u)=10m/s
acceleration (a)=0
time taken (t) =40s
then distance (s)=u t +1/2 a t^2
s= u t +0 (as a is 0)
s= 10 x 40
s= 400M
Answer:

Explanation:
The change in electrical potential energy of a charged particle moving through a potential difference is given by

where
q is the magnitude of the charge of the particle
is the potential difference
In this problem:
- the charge of the particle is 3.00 elementary charges, so

- the potential difference is

So, the change in electrical potential energy is
