Solution:
According to the equations for 1-D kinematics. The only change to them is that instead one equation that describes general motion.
So we will have to use the equations twice: once for motion in the x direction and another time for the y direction.
v_f=v_o + at ……..(a)
[where v_f and v_o are final velocity and initial velocity, respectively]
Now ,
Initially, there was y velocity, however gravity began to act on the football, causing it to accelerate.
Applying this value in equation (a)
v_yf = at = -9.81 m/s^s * 1.75 = -17.165 m/s in the y direction
For calculating the magnitude of the equation we have to square root the given value
(16.6i - 17.165y)
\\
\left | V \right |=sqrt{16.6^{2}+17.165^{2}}\\ =
\sqrt{275.56+294.637225}\\=
\sqrt{570.197225}\\=
23.87[/tex]
The first opiton is the answer A)<span>Rahul’s weight
</span>
1. Velocity at which the packet reaches the ground: 121.2 m/s
The motion of the packet is a uniformly accelerated motion, with constant acceleration
directed downward, initial vertical position
, and initial vertical velocity
. We can use the following SUVAT equation to find the final velocity of the packet after travelling for d=750 m:

substituting, we find

2. height at which the packet has half this velocity: 562.6 m
We need to find the heigth at which the packet has a velocity of

In order to do that, we use again the same SUVAT equation substituting
with this value, so that we find the new distance d that the packet travelled from the helicopter to reach this velocity:

Which means that the heigth of the packet was

Answer:
96%
Explanation:
To find the values of the motor efficiency you use the following formula:

P_o: output power = 864J/0.5min=864J/30s=28.8W
P_i: input power = I*V = (3A)(12V) = 36W
By replacing this values you obtain:

hence, the motor efficiency is about 96%
traslation:
Pentru a găsi valorile eficienței motorului, utilizați următoarea formulă:
P_o: putere de ieșire = 864J / 0.5min = 864J / 30s = 28.8W
P_i: putere de intrare = I * V = (3A) (12V) = 36W
Înlocuind aceste valori obțineți:
prin urmare, eficiența motorului este de aproximativ 96%
Answer:
K.E = 0.0075 J
Explanation:
Given data:
Mass of the ball = 1.5 kg
radius, r = 50 cm = 0.5 m
Angular speed, ω = 12 rev/min = (12/60) rev/sec = 0.2 rev/sec
Now,
the kinetic energy is given as:
K.E = 
where,
I is the moment of inertia = mr²
on substituting the values, we get

or
K.E = 0.0075 J