Answer:
The attractive forces must be overcome are :
Explanation:
For the compound to dissolve the attractive forces existing between atoms of the compound must be reduced
<u>CsI is ionic compound </u><em>and its molecules are held together by ionic(electrostatic) force . These force must be weakened for its dissolution</em>
Forces in HF <em>:</em>
<em>1 .Hydrogen Bonding : In HF strong intermolecular Hydrogen Bonding exist between the electronegative F and Hydrogen</em>
2. Dipole - dipole : <em>HF is polar . So it is a permanent dipole and has dipole diople interaction</em>
Answer:
b. 7.5 x 10^-3
Explanation:
To solve this problem we need to keep in mind the <em>definition of molarity</em>:
- Molarity = moles of solute / liters of solution
With the above information in mind it is possible to calculate the moles of solute, given the volume (10 mL) and concentration (0.75 M) of the solution:
- First we<u> convert 10 mL to L</u> ⇒ 10 mL / 1000 = 0.01 L
Then we <u>calculate the moles of AgNO₃</u>:
- moles of solute = Molarity * Liters of solution
- 0.01 L * 0.75 M = 7.5x10⁻³ mol AgNO₃
<em>One mole of AgNO₃ contains one mole of Ag⁺</em>, thus the number of Ag⁺ moles is also 7.5x10⁻³.
Answer:
Ecosystems have lots of different living organisms that interact with each other. The living organisms in an ecosystem can be divided into three categories: producers, consumers and decomposers. They are all important parts of an ecosystem. Producers are the green plants.
Explanation:
Hope this helps
The answer is 79 I believe