Answer:
take 75 gm or it will be overdose
Answer:
When writing equation the mass on left side of equation must be equal to the mass on right side. True
Explanation:
The chemical reactions always follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
For example:
In photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass because total mass is equal on both side of equation.
Balanced equation :
Cu(NO₃)₂(aq) + 2KOH(aq) → Cu(OH)₂(s) + 2KNO₃(aq)
Balancing a chemical equation :
A chemical equation shows us the substances involved in a chemical reaction - the substances that react (reactants) and the substances that are produced (products). In general, a chemical equation looks like this:
Reactant →Product
According to the law of conservation of mass, when a chemical reaction occurs, the mass of the products should be equal to the mass of the reactants. Therefore, the amount of the atoms in each element does not change in the chemical reaction. As a result, the chemical equation that shows the chemical reaction needs to be balanced. A balanced chemical equation occurs when the number of the atoms involved in the reactants side is equal to the number of atoms in the products side.
Learn more about balanced equation :
brainly.com/question/15355912
#SPJ4
Answer: By understanding conversion factors and how they are related to each other
Explanation:
Dimensional Analysis is a step by step approach to solving problems in Physics, Chemistry , and Mathematics. It involves having a clear knowledge and understanding to be able to convert a given unit to another in the same dimension using conversion factors and knowing how they are related to each other.
For instance, In Chemistry, we want to Convert 120mL to L.(note that ml stands for millilitres and ;L stands for litres)
Or first approach will be to write out the conversion factor related to our problem which is
1000ml =1L
such that 120ml = (we cross multiply))
giving us 120ml x 1L/1000ml =0.12L
This same process is applied to convert any type of dimensional analysis problems be it physics or mathematics.
The given question is incomplete. The complete question is :
It takes 151 kJ/mol to break an iodine-iodine single bond. Calculate the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon. Be sure your answer has the correct number of significant digits.
Answer: 793 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:
![E=\frac{hc}{\lambda}](https://tex.z-dn.net/?f=E%3D%5Cfrac%7Bhc%7D%7B%5Clambda%7D)
where,
E = energy of the light = 151 kJ= 151000 J (1kJ=1000J)
N= moles = 1 = ![6.023\times 10^{23}](https://tex.z-dn.net/?f=6.023%5Ctimes%2010%5E%7B23%7D)
h = Planck's constant = ![6.626\times 10^{-34}Js](https://tex.z-dn.net/?f=6.626%5Ctimes%2010%5E%7B-34%7DJs)
c = speed of light = ![3\times 10^8m/s](https://tex.z-dn.net/?f=3%5Ctimes%2010%5E8m%2Fs)
= wavelength of light = ?
Putting in the values:
![151000J=\frac{6.023\times 10^{23}\times 6.626\times 10^{-34}Js\times 3\times 10^8m/s}{\lambda}](https://tex.z-dn.net/?f=151000J%3D%5Cfrac%7B6.023%5Ctimes%2010%5E%7B23%7D%5Ctimes%206.626%5Ctimes%2010%5E%7B-34%7DJs%5Ctimes%203%5Ctimes%2010%5E8m%2Fs%7D%7B%5Clambda%7D%20)
![1m=10^{-9}nm](https://tex.z-dn.net/?f=1m%3D10%5E%7B-9%7Dnm)
Thus the maximum wavelength of light for which an iodine-iodine single bond could be broken by absorbing a single photon is 793 nm