Answer:
The center of mass move with the velocity of -3.487 m/s.
Explanation:
Given values of block A.
Mass of block A, (M1) = 4 kg
Speed of block A, (V1) = 2 m/s
Given values of block B.
Mass of block B, (M2) = 8.4 kg
Speed of block B, (V2) = -6.1 m/s
Below is the formula to find the velocity of center of mass.




Answer:
# _units = 1000
Explanation:
This exercise we can use a direct proportion rule.
If a volume of radius r = 1 is one unit, how many units can fit in a volume of radius 10?
# _units = V₁₀ / V₁
The volume of a body of radius 1 is
V₁ = 4/3 π r₁³
V₁ = 4/3π
the volume of a body of radius r = 10
V₁₀ = 4/3 π r₂³
V10 = 4/3 π 10³
the number of times this content is
#_units = 4/3 π 1000 / (4/3 π 1)
# _units = 1000
<u>Given data</u>
Determine Internal energy of gas N₂, (U) = ?
Temperature (T) = 25° C
= 25+273 = 298 K,
Gas constant (R) = 8.31 J/ mol-K ,
Number of moles (n) = 3 moles,
<u>Internal energy of N₂ </u>
Internal energy is a property of thermodynamics, the concept of internal energy can be understand by ideal gas. For example N₂, the observations for oxygen and nitrogen at atmospheric temperatures, f=5, (where f is translational degrees of freedom).
So per kilogram of gas,
The internal energy (U) = 5/2 .n.R.T
= (5/2) × 3 × 8.31 ×298
= 18572.85 J
<em>The internal energy of the N₂ is 18,572.85 J and it is approximately equal to 18,600 J given in the option B.</em>
A, b and d
Competition for fix resources of course increases the
energy expenditure needed to gather those resources and leaves less for a
given population. A lower amount of sunlight or water also contributes
to decreased energy which lowers growth. Finally, small borders limit
growth in that population density can only go so high before the death
rate increases beyond the birth rate.