Answer:
78.4 KN/m
Explanation:
Given
mass of person 'm' =80 kg
car dips about i.e spring stretched 'x'= 1 cm => 0.01m
acceleration due to gravity 'g'= 9.8 m/s^2
as we know that,in order to find approximate spring constant we use Hooke's Law i.e F=kx
where,
F = the force needed
x= distance the spring is stretched or compressed beyond its natural length
k= constant of proportionality called the spring constant.
F=kx
---> (since f=mg)
mg=kx
k=(mg)/x
k=(80 x 9.8)/ 0.01
k=78.4x
k=78.4 KN/m
Solution :
Given :
M = 0.35 kg

Total mechanical energy = constant
or 
But
and 
Therefore, potential energy at the top = kinetic energy at the bottom


(h = 35 cm = 0.35 m)
= 2.62 m/s
It is the velocity of M just before collision of 'm' at the bottom.
We know that in elastic collision velocity after collision is given by :

here, 
∴ 

= 0.33 m/s
Therefore, velocity after the collision of mass M = 0.33 m/s
The human heart is an organ that pumps blood throughout the body via the circulatory system, supplying oxygen and nutrients to the tissues and removing carbon dioxide and other wastes.
<h2>
Answer: Pressure</h2>
<u>Pressure</u> is the force
exerted by a gas, a liquid or a solid on a surface (or area)
.
Its unit according to the International System of Units is Pascal
which is equal to
and its formula is:
I believe the correct
form of the energy function is:
u (x) = (3.00 N)
x + (1.00 N / m^2) x^3
or in simpler
terms without the units:
u (x) = 3 x +
x^3
Since the
highest degree is power of 3, therefore there are two roots or solutions of the
equation.
Since we are to
find for the positions x in which the force equal to zero, u (x) = 0,
therefore:
3 x + x^3 = u
(x)
3 x + x^3 = 0
Taking out x:
x (3 + x^2) = 0
So one of the
factors is x = 0.
Finding for the
other two factors, we divide the two sides by x and giving us:
x^2 + 3 = 0
x^2 = - 3
x = sqrt (- 3)
x = - 1.732 i, 1.732
i
The other two
roots are imaginary therefore the force is only equal to zero when the position
is also zero.
Answer:
x = 0