1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
3 years ago
13

b) The distance of the red supergiant Betelgeuse is approximately 427 light years. If it were to explode as a supernova, it woul

d be one of the brightest stars in the sky. Right now, the brightest star in the sky other than the Sun is Sirius (which has a luminosity of 26LSun and is 26 light years away). How much brighter than Sirius would the Betelgeuse supernova be (from our point of view) if it reached a maximum luminosity of 10^10LSun? c) There have been some claims that when Betelgeuse explodes it will be like having a second Sun in the sky. Compare Betelgeuse’s brightness to the Sun’s brightness at Earth. Is this likely to be correct?
Physics
1 answer:
Nat2105 [25]3 years ago
4 0

Answer:

b) Betelgeuse would be \approx 1.43 \cdot 10^{6} times brighter than Sirius

c) Since Betelgeuse brightness from Earth compared to the Sun is \approx 1.37 \cdot 10^{-5} } the statement saying that it would be like a second Sun is incorrect

Explanation:

The start brightness is related to it luminosity thought the following equation:

B = \displaystyle{\frac{L}{4\pi d^2}} (1)

where B is the brightness, L is the star luminosity and d, the distance from the star to the point where the brightness is calculated (measured). Thus:

b) B_{Betelgeuse} = \displaystyle{\frac{10^{10}L_{Sun}}{4\pi (427\ ly)^2}} and B_{Sirius} = \displaystyle{\frac{26L_{Sun}}{4\pi (26\ ly)^2}} where L_{Sun} is the Sun luminosity (3.9 x 10^{26} W) but we don't need to know this value for solving the problem. ly is light years.

Finding the ratio between the two brightness we get:

\displaystyle{\frac{B_{Betelgeuse}}{B_{Sirius}}=\frac{10^{10}L_{Sun}}{4\pi (427\ ly)^2} \times \frac{4\pi (26\ ly)^2}{26L_{Sun}} \approx 1.43 \cdot 10^{6} }

c) we can do the same as in b) but we need to know the distance from the Sun to the Earth, which is 1.581 \cdot 10^{-5}\ ly. Then

\displaystyle{\frac{B_{Betelgeuse}}{B_{Sun}}=\frac{10^{10}L_{Sun}}{4\pi (427\ ly)^2} \times \frac{4\pi (1.581\cdot 10^{-5}\ ly)^2}{1\ L_{Sun}} \approx 1.37 \cdot 10^{-5} }

Notice that since the star luminosities are given with respect to the Sun luminosity we don't need to use any value a simple states the Sun luminosity as the unit, i.e 1. From this result, it is clear that when Betelgeuse explodes it won't be like having a second Sun, it brightness will be 5 orders of magnitude smaller that our Sun brightness.

You might be interested in
Determine the acceleration of a pendulum bob as it passes through an angle of 15 degrees to the right of the equilibrium point.
BigorU [14]

Answer:

Explanation:

Since energy is conserved:

2

mu  

2

 

​

=  

2

mv  

2

 

​

+mgh

⇒u  

2

=v  

2

+2gh

⇒(3)  

2

=v  

2

+2(9.8)(0.5−0.5cos60)

⇒v=2m/s

7 0
3 years ago
Two workers are sliding 350 kgkg crate across the floor. One worker pushes forward on the crate with a force of 390 NN while the
svetoff [14.1K]

Answer:

\mu_k=0.18

Explanation:

First, we write the equations of motion for each axis. Since the crate is sliding with constant speed, its acceleration is zero. Then, we have:

x: T+F-f_k=0\\\\y:N-mg=0

Where T is the tension in the rope, F is the force exerted by the first worker, f_k is the frictional force, N is the normal force and mg is the weight of the crate.

Since f_k=\mu_k N and N=mg, we can rewrite the first equation as:

T+F-\mu_k mg=0

Now, we solve for \mu_k and calculate it:

\mu_k=\frac{T+F}{mg}\\ \\\mu_k =\frac{220N+390N}{(350kg)(9.8m/s^{2})} =0.18

This means that the crate's coefficient of kinetic friction on the floor is 0.18.

6 0
3 years ago
PLS HELP
Ahat [919]
<h3>B. True</h3>

"This was the idea that non-living objects can give rise to living organisms."

7 0
3 years ago
You throw a rock horizontally out of a 7th story window. You time that it takes 3.7 seconds to hit the ground, and measure that
Nady [450]
Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
5 0
3 years ago
Elements in an blank or blank of the periodic table have similar characteristics
mr_godi [17]
Don't know if this is a True/False questions but that is true

6 0
4 years ago
Other questions:
  • Name a characteristic property of water
    9·2 answers
  • Keaton is asked to solve the following physics problem:
    6·1 answer
  • Asteroid Toutatis passed near Earth in 2006 at four times the distance to our Moon. This was the closest approach we will have u
    11·1 answer
  • Which type of bonding is found in all molecular substances
    5·1 answer
  • A rock band playing an outdoor concert produces sound at 120 dB 5.0 m away from their single working loudspeaker. What is the so
    5·1 answer
  • Olivia noticed that it took 2s for a wave to pass by where she was swimming. What property of a wave did she measure?
    9·1 answer
  • What is gama rays an it's uses​
    15·1 answer
  • What is the momentum of a baseball with a mass of 0.12 kg being thrown
    15·1 answer
  • Consider the diagram of a pendulum's motion shown above. A pendulum can be used to model the change from potential energy
    6·1 answer
  • a mountain goat starts a rock slide and the rocks crash down the slope 100 m. If the rocks reach the bottom in 5 s, what is thei
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!