Like a seesaw, it shows that the forces aren’t equal because if it was the seesaw would stay put
Answer:
The amount of current that must flow through the wire for it to be suspended against gravity by magnetic force = 6.125 A
Explanation:
Force on a wire carrying current in an electric field is given by
F = (B)(I)(L) sin θ
For this question,
The magnetic force must match the weight of the wire.
F = mg
mg = (B)(I)(L) sin θ
(m/L)g = (B)(I) sin θ
Mass per unit length = 75 g/m = 0.075 kg/m
B = magnetic field = 0.12 T
I = ?
g = acceleration due to gravity = 9.8 m/s
θ = angle between wire's current direction and magnetic field = 90°
0.075 × 9.8 = 0.12 × I sin 90°
I = 0.075 × 9.8/0.12 = 6.125 A
Answer:
It is used in MRI because it does not damage cells
Radio waves are used for space research because they have very long wavelengths
Explanation:
Many parts of the electromagnetic spectrum are applied in clinical diagnosis and treatment of illnesses. However, these highly ionizing radiation damage cells and its dosage must be carefully managed to avoid creating radiation related health problems for the patients.
Radio waves can be used in MRI without issues because the energy of the radiation is not sufficient to cause damage to cells but is sufficient to provide images for the sake of medical diagnosis.
Secondly, radio waves have long wavelength. This property is suitable for long range
communication. Hence it can be used in space research
Answer:
it lowers the voltage in homes
Explanation:
this is due to safety reasons as a human cant survive power line voltages which are between 150k and 760k and if you plugged anything short of a piece of 1 inch thick wire not counting insulation it would immediately start smoking and burn the cable.
Answer:
83.3 kHz
Explanation:
The frequency of a waveform is equal to the reciprocal of its period:

where
f is the frequency
T is the period
In this problem, we have

so, the frequency of the waveform is

And by converting into kiloHertz,
