Answer and Explanation:
Comparison between the Titan's atmosphere and earth atmosphere
- Titan atmosphere is more denser than the earth atmosphere
- The quantity of nitrogen is more in titan atmosphere than earth atmosphere titan atmosphere have about 98 % of nitrogen in the other hand earth atmosphere has only 78 %
- There are no oxygen present in titan atmosphere while in earth atmosphere it is present
- Its air is not suitable for breath but in earth atmosphere we can breath
Answer:
W = 1.432 KJ
Explanation:
given,
mass = 22.2 Kg
angle of the rope = 27.5°
distance on the ground = 24 m
kinetic friction= μ = 0.32
acceleration due to gravity, g = 9.8 m/s²
Work done = ?
W = F d cosθ
a = 0 because it is moving with constant speed
equating all the forces acting in x direction
F cosθ = F friction = μN
equating all the forces acting in y direction
F sinθ + N -mg =0
now,
N = mg - F sinθ
putting value of N
F cosθ = μ mg -μ F sinθ
F (cosθ + μsinθ ) = μ mg


F =67.28 N
now,
W=F d cosθ
W =67.28 x 24 x cos(27.5)
W =1432.27 J
W = 1.432 KJ
The speed of the car passing you is 6 m/s while car is moving 6 m/s behind the car.
<h3>Relative velocity of the car</h3>
The speed of the car passing you is determined by applying relative velocity principle as shown below;
Vr = Va - Vb
Vr = 26 m/s - 32 m/s
Vr = -6 m/s
Thus, the speed of the car passing you is 6 m/s while car is moving 6 m/s behind the car.
Learn more about relative velocity here: brainly.com/question/17228388
#SPJ1
Answer:
The net emissions rate of sulfur is 1861 lb/hr
Explanation:
Given that:
The power or the power plant = 750 MWe
Since the power plant with a thermal efficiency of 42% (i.e. 0.42) burns 9000 Btu/lb coal, Then the energy released per one lb of the coal can be computed as:

= 3988126.8 J
= 3.99 MJ
Also, The mass of the burned coal per sec can be calculated by dividing the molecular weight of the power plant by the energy released per one lb.
i.e.
The mass of the coal that is burned per sec 
The mass of the coal that is burned per sec = 187.97 lb/s
The mass of sulfur burned 
= 2.067 lb/s
To hour; we have:
= 7444 lb/hr
However, If a scrubber with 75% removal efficiency is utilized,
Then; the net emissions rate of sulfur is (1 - 0.75) × 7444 lb/hr
= 0.25 × 7444 lb/hr
= 1861 lb/hr
Hence, the net emissions rate of sulfur is 1861 lb/hr