Answer:

Step-by-step explanation:
Given: Chandler walk 1/16 km every 10 minutes.
First, lets find how many 10 minutes in one hours or convert minutes in hours.
∴ Time= 
Now, finding kilometres travelled in 1 hour.
Distance travelled= 
Distance travelled = 
Converting
into decimal will have 0.375 km.
∴
will chandler walk in 1 hour.
Answer:
1) 145°
2) 20°
3) x = 7 ; measurement of the missing angle = 24
Step-by-step explanation:
1) supplement = 180°, 180 - 35 = 145
2) complment = 90° , 90 - 70 = 20
3) the figure is a right angle so the measurement is 90°
66 + (4x-4) = 90
62 + 4x = 90
4x = 28
x = 7
4(7) - 4
28 - 4
= 24
Answer:
The steady state proportion for the U (uninvolved) fraction is 0.4.
Step-by-step explanation:
This can be modeled as a Markov chain, with two states:
U: uninvolved
M: matched
The transitions probability matrix is:

The steady state is that satisfies this product of matrixs:
![[\pi] \cdot [P]=[\pi]](https://tex.z-dn.net/?f=%5B%5Cpi%5D%20%5Ccdot%20%5BP%5D%3D%5B%5Cpi%5D)
being π the matrix of steady-state proportions and P the transition matrix.
If we multiply, we have:

Now we have to solve this equations

We choose one of the equations and solve:

Then, the steady state proportion for the U (uninvolved) fraction is 0.4.
10-7x=2-8x
We move all terms to the left:
10-7x-(2-8x)=0
We add all the numbers together, and all the variables
-7x-(-8x+2)+10=0
We get rid of parentheses
-7x+8x-2+10=0
We add all the numbers together, and all the variables
x+8=0
We move all terms containing x to the left, all other terms to the right
x=-8
Answer:
![\left(\displaystyle \sqrt[3]{x^{-\tfrac 35}}\right)^{\tfrac 58}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdisplaystyle%20%5Csqrt%5B3%5D%7Bx%5E%7B-%5Ctfrac%2035%7D%7D%5Cright%29%5E%7B%5Ctfrac%2058%7D)
Step-by-step explanation:
![\left(\displaystyle \sqrt[3]{x^{-\tfrac 35}}\right)^{\tfrac 58}\\\\\\=\left[ \left(\displaystyle x^{-\tfrac 35} \right)^{\tfrac 13 \right]^{\tfrac 58}\\\\\\=\left( \displaystyle x^{-\tfrac 35}\right)^{\tfrac 5{24}}\\\\\\=x^{ \displaystyle -\tfrac{3}{24} \right}\\\\\\=x^{\displaystyle -\tfrac 18 }\\\\\\=\dfrac 1{x^{\tfrac 18}}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdisplaystyle%20%5Csqrt%5B3%5D%7Bx%5E%7B-%5Ctfrac%2035%7D%7D%5Cright%29%5E%7B%5Ctfrac%2058%7D%5C%5C%5C%5C%5C%5C%3D%5Cleft%5B%20%5Cleft%28%5Cdisplaystyle%20x%5E%7B-%5Ctfrac%2035%7D%20%5Cright%29%5E%7B%5Ctfrac%2013%20%5Cright%5D%5E%7B%5Ctfrac%2058%7D%5C%5C%5C%5C%5C%5C%3D%5Cleft%28%20%5Cdisplaystyle%20x%5E%7B-%5Ctfrac%2035%7D%5Cright%29%5E%7B%5Ctfrac%205%7B24%7D%7D%5C%5C%5C%5C%5C%5C%3Dx%5E%7B%20%5Cdisplaystyle%20-%5Ctfrac%7B3%7D%7B24%7D%20%20%5Cright%7D%5C%5C%5C%5C%5C%5C%3Dx%5E%7B%5Cdisplaystyle%20-%5Ctfrac%2018%20%20%7D%5C%5C%5C%5C%5C%5C%3D%5Cdfrac%201%7Bx%5E%7B%5Ctfrac%2018%7D%7D)