Answer:
32.1 N Please Give Brainliest
Explanation:
force = mass x acceleration
Answer:
Explanation:
The right side of your heart receives oxygen-poor blood from your veins and pumps it to your lungs, where it picks up oxygen and gets rid of carbon dioxide. The left side of your heart receives oxygen-rich blood from your lungs and pumps it through your arteries to the rest of your body.
#I AM ILLITERATE
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s
Answer:
The shear stress at a distance 0.3-in away from the pipe wall is 0.06012lb/ft²
The shear stress at a distance 0.5-in away from the pipe wall is 0
Explanation:
Given;
pressure drop per unit length of pipe = 0.6 psi/ft
length of the pipe = 12 feet
diameter of the pipe = 1 -in
Pressure drop per unit length in a circular pipe is given as;

make shear stress (τ) the subject of the formula

Where;
τ is the shear stress on the pipe wall.
ΔP is the pressure drop
L is the length of the pipe
r is the distance from the pipe wall
Part (a) shear stress at a distance of 0.3-in away from the pipe wall
Radius of the pipe = 0.5 -in
r = 0.5 - 0.3 = 0.2-in = 0.0167 ft
ΔP = 0.6 psi/ft
ΔP, in lb/ft² = 0.6 x 144 = 86.4 lb/ft²

Part (b) shear stress at a distance of 0.5-in away from the pipe wall
r = 0.5 - 0.5 = 0

I think 3 but I’m not sure I don’t even know who they are