Answer:
In a two particle system, the center of mass lies on the center of the line joining the two particles.
The heat remains constant because there’s nothing to cool it down
Say we have a cylinder
that has a height of dx, we see that the cylinder has a volume of: <span>
<span>Vcylinder = πr^2*h = π(5)^2(dx) = 25π dx
Then, the weight of oil in this cylinder is:
Fcylinder = 50 * Vcylinder = (50)(25π dx) = 1250π dx.
Then, since the oil x feet from the top of the tank needs to
travel x feet to get the top, we have:
Wcylinder = Force x Distance = (1250π dx)(x) = 1250π x dx.
<span>Integrating from x1 to x2 ft gives the total work to be: (x1
= distance from top liquid level to ground level; x2 = distance from bottom
liquid level to ground level)</span>
<span>W = ∫ 1250π x dx
<span>W = 1250π ∫ x dx
W = 625π * (x2 – x1)</span></span></span></span>
<span>x2 = 14 ft + 15 ft = 29 ft</span>
x1 = 14 ft + 1 ft = 15
ft
<span>
W = 625π * (29^2 - 15^2)
<span>W = 385,000π ft-lbs
= 1,209,513.17 ft-lbs</span></span>
Answer:
The temperature coefficient of resistivity for a linear thermistor is 
Explanation:
Given that,
Initial temperature = 0.00°C
Resistance = 75.0 Ω
Final temperature = 525°C
Resistance = 275 Ω
We need to calculate the temperature coefficient of resistivity for a linear thermistor
Using formula for a linear thermistor



Put the value into the formula


Hence, The temperature coefficient of resistivity for a linear thermistor is 