Answer:
<em>Magnitude of the Frictional force is 200 N</em>
Explanation:
The frictional force is the force that tries to oppose relative motion between two surfaces that are contacting. The coefficient of static friction is the coefficient of friction of a body that is not moving.
Newton's third law of motion states that action and reaction forces are equal and opposite. So the frictional force felt on the filing cabinet will be equal to the applied force pulling the cabinet.
Frictional force = Force applied
Force applied = 200 N
Therefore, the magnitude of the friction force on the filing cabinet is 200 N
Answer:
(b) B
Explanation:
The direction of force on a current carrying wire in a magnetic field can be found using the right hand rule, which states that-"stretch the thumb in the direction of the current, and point the fingers in the direction of magnetic field. The direction of palm will then give the direction of force on the wire
On wire B the forces due to A and C act in the same direction and so strengthen each other. they get added up because the forces act in the same direction.
on wires A and C the forces (due to B and C and A and B
respectively) act in opposite directions and therefore tend to cancel out.
Orient the semi-circle arc such that it is symmetric with respect to the y-axis. Now, by symmetry, the electric field in the x-direction cancels to zero. So the only thing of interest is the electric field in the y-direction.
dEy=kp/r^2*sin(a) where k is coulombs constant p is the charge density r is the radius of the arc and a is the angular position of each point on the arc (ranging from 0 to pi. Integrating this renders 2kq/(pi*r^3). Where k is 9*10^9, q is 9.8 uC r is .093 m
I answeared your question can you answear my question pleas