All objects in orbit must follow the path of an ellipse (one of Keplers laws)
Answer:
A) 138.8g
B)73.97 cm/s
Explanation:
K = 15.5 Kn/m
A = 7 cm
N = 37 oscillations
tn = 20 seconds
A) In harmonic motion, we know that;
ω² = k/m and m = k/ω²
Also, angular frequency (ω) = 2π/T
Now, T is the time it takes to complete one oscillation.
So from the question, we can calculate T as;
T = 22/37.
Thus ;
ω = 2π/(22/37) = 10.5672
So,mass of ball (m) = k/ω² = 15.5/10.5672² = 0.1388kg or 138.8g
B) In simple harmonic motion, velocity is given as;
v(t) = vmax Sin (ωt + Φ)
It is from the derivative of;
v(t) = -Aω Sin (ωt + Φ)
So comparing the two equations of v(t), we can see that ;
vmax = Aω
Vmax = 7 x 10.5672 = 73.97 cm/s
Explanation:
you measure temperature in degrees celsius using a thermometer. Thermal energy is measured in joules. A larger volume of water will take longer to heat up but will store more energy than the smaller object. However, a smaller object will lose it's heat faster than a larger object. A cup of tea has less thermal energy than a swimming pool.
The distance between Jupiter and the sun is 5.2 AU.
According to Kepler's third law, the square of the period of revolution of planets is proportional to the cube of their mean distances from the sun. From this; T^2 = r^3.
Now, we are told that the orbital period (T) is 11. 9 Earth years. We have to make the distance the subject of the formula.
r =T^2/3
r = (11.9)^2/3
r = 5.2 AU
Learn more: brainly.com/question/15207516