Check the power source. Your thermostat may just not be connected right or at all. A blown fuse, tripped circuit breaker or dead batteries will prevent the thermostat from turning on your furnace.
Dirty thermostat? That’ll cause issues. Clean up any dust, dirt, spider webs and other debris. Any of these things can coat the inside of the thermostat and interfere with both electrical and mechanical functions of the thermostat. Put this on your get-ready-for-winter cleaning list. Just use a soft, clean brush to clean the inside components gently. Don’t get anything wet. Also you can use a can of compressed air, such as is used for electronics, to clear debris.
Check for any loose wires or terminal screws inside the thermostat. Make sure wires aren’t corroded or detached. Never remove the thermostat cover without removing the batteries or turning off the power at the fuse or breaker box. Tighten screws and secure loose wires if needed.
It may be time to replace your thermostat is it’s old. They aren’t meant to last forever and an old thermostat may be costing you a lot of money in wasted energy and time spent tinkering with an outdated model. There are great programmable thermostats available now that are easy to use and simple to connect to your existing HVAC system. Click here for more info on programmable thermostats.
I attached the full question.
We know that for a parallel-plate capacitor the surface charge density is given by the following formula:

Where V is the voltage between the plates and d is separation.
Voltage is by definition:

Voltage is analog to the mechanical work done by the force.
Above formula is correct only If the field is constant, and we can assume that it is since no function has been given.
The charge density would then be:

Please note that elecric permittivity of air is very close to elecric permittivity of vacum, it is common to use them <span>interchangeably</span>.
The answer is A: can change
Answer:
option b
Explanation:
from the given formula, s=d/t
make t the subject of the formula we have
t=d/s
5/100
0.5
Answer: b. Throw it directly away from the space station.
Explanation:
According to <u>Newton's third law of motion</u>, <em>when two bodies interact between them, appear equal forces and opposite senses in each of them.</em>
To understand it better:
Each time a body or object exerts a force on a second body or object, it (the second body) will exert a force of equal magnitude but in the opposite direction on the first.
So, if the astronaut throws the wrench away from the space station (in the opposite direction of the space station), according to Newton's third law, she will be automatically moving towards the station and be safe.