Answer:
H = 6.93 m
Explanation:
given data
velocity v = 35 m/s
horizontal component Vx = 33 m/s
solution
we get here maximum height so first we get vertical component here that is express as
Vy =
.........................1
put here value
Vy =
Vy = 11.66 m/s
and
now we get height
H =
.............................2
put here value
H = 
H = 6.93 m
Answer: equal to 3 m/s
Explanation:
Speed of golf ball will be equal to 3 m/s because in Perfect Elastic Collision Energy is conserved .
So speed of golf ball will be same in order to Satisfy
Initial Kinetic Energy =Final Kinetic Energy
Considering Bowling ball remains at rest after collision other wise some energy will also be acquired by bowling ball which automatically decreases the amount of Kinetic Energy of golf ball resulting its speed to decrease by some extent.
Answer:
4.25 m/s
Explanation:
Force, F = 22 N
Time, t = 0.029 s
mass, m = 0.15 kg
initial velocity of the cue ball, u = 0
Let v be the final velocity of the cue ball.
Use newton's second law
Force = rate of change on momentum
F = m (v - u) / t
22 = 0.15 ( v - 0) / 0.029
v = 4.25 m/s
Thus, the velocity of cue ball after being struck is 4.25 m/s.
The evidence of this research is published in the scientific journal Nature communication.
<u>Explanation:</u>
Our solar system shaped about 4.5 billion years prior from a thick haze of interstellar gas and residue. The cloud crumbled, potentially due to the shock wave of a close by detonating star, called a supernova. At the point when this residue cloud crumbled, it framed a sun powered cloud—a turning, whirling plate of material.
The research is distributed in the latest issue of journal Nature Communications. About 4.6 billion years prior, a haze of gas and residue that in the end framed our nearby planetary group was upset. The following gravitational breakdown framed the proto-Sun with an encompassing plate where the planets were conceived.