Answer:
You use trigonometry.
Step-by-step explanation:
You can use soh cah toa. Basically you pic one side and if the interior angle is opposite or next to it, you you soh, or cah, or toa, it's based on where the angle is.
45/56
5/7 divided 8/9
5/7 times 9/8
45/56
14/18-9/18=5/18 it can't be simplified anymore
Answer:
16.5 ft by 25.5 ft
Step-by-step explanation:
Let w represent the width of the garden in feet. Then w+9 is the garden's length, and w(w+9) represents its area.
The surrounding walkway adds 8 feet to each dimension, so the total area of the garden with the walkway is ...
(w+8)(w+9+8) = w^2 +25w +136
If we subtract the area of the garden itself, then the remaining area is that of the walkway:
(w^2 +25w +136) - (w(w+9)) = 400
16w + 136 = 400 . . .simplify
16w = 264 . . . . . . . . subtract 136
264/16 = w = 16.5 . . . . . width of the garden in feet
w+9 = 25.5 . . . . . . . . . . .length of the garden in feet
Like XZ divides the cord YV into two congruent parts (YW=5.27 cm=WV), this segment XZ must be perpendicular to the segment YV, then the angle XWY in triangle XWY is a right angle (90°) and the triangle XWY is a right angle.
We can apply the trigonometric ratios in triangle XWY:
Hypotenure: XY
sin 44°=(Opposite leg to 44°)/(hypothenuse)
sin 44°=YW/XY
sin 44°=(5.27 cm)/XY
Solving for XY. Cross multiplication:
sin44° XY=5.27 cm
Dividing both sides of the equation by sin 44°:
sin 44° XY / sin 44° = (5.27 cm)/sin 44°
XY=(5.27/sin 44°) cm
XY=(5.27/0.694658370) cm
XY=7.586462929 cm
This value XY is the radius of the circle, then:
XZ=XY→XZ=7.586462969 cm
tan 44°=(Opposite leg to 44°) / (Adjacent leg to 44°)
tan 44°=YW/XW
tan 44°=(5.27 cm)/XW
Solving for XW. Cross multiplication:
tan 44° XW=5.27 cm
Dividing both sides of the equation by tan 44°:
tan 44° XW / tan 44°=(5.27 cm)/tan 44°
XW=(5.27/tan 44°) cm
XW=(5.27/0.965688775) cm
XW=5.457244753 cm
WZ=XZ-XW
WZ=7.586462969 cm-5.457244753 cm
WZ=2.129218216 cm
Rounded to 2 decimal places:
WZ=2.13 cm
Answer: The <span>measurement is closest to the measure of segment WZ is
2.13 cm</span>