- Get 3 cups of water at the exact same temperature, using the thermometer to check.
- Label the cups as ‘whole’, ‘pieces’, and ‘crushed’
- Next, get something to dissolve, in this case, polident. Take one of the polident tablets and break it into 4 pieces, and set it aside.
- Take another polident tablet and this time put it into a different cup, and crush it. Set it aside.
- Keep the last tablet whole.
- Set up your stopwatch and drop the polident tablet that is whole in the cup labeled ‘whole’, starting the stopwatch at the same time.
- Watch the cup and see when the tablet is fully dissolved, then stop the stopwatch.
- Record the time in the table.
- Repeat steps 6-8 for both the ‘pieces’ and ‘crushed’ tablets.
Hope this helps! Please let me know if you need more help, or if you think my answer is incorrect. Brainliest would be MUCH appreciated. Have a great day!
Stay Brainy!
−
<u>Answer:</u> The initial pH of the HCl solution is 3
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is HCl
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

1 mole of HCl produces 1 mole of
ions and 1 mole of
ions
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
![[H^+]=0.001M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.001M)
Putting values in above equation, we get:

Hence, the initial pH of the HCl solution is 3
The answer would be the third one listed, Refraction
Answer:
2
Explanation:
Thermal, chemical and electromagnetic is the right answer
The percent yield of the reaction between ammonia gas with oxygen gas is 90.52%.
A chemical reaction between ammonia gas (NH3) with oxygen gas (O2)
NH₃ + O₂ → NO₂ + H₂O
The balanced reaction 4NH₃ + 7O₂ → 4NO₂ + 6H₂O
Calculate the number of moles from the reactant
- Ammonia gas
Molar mass N = 14 gr/mol
Molar mass H = 1 gr/mol
Molar mass NH₃ = 14 + (3 × 1) = 14 + 3 = 17 gr/mol
mass = 28.5 grams
n = m ÷ molar mass = 28.5 ÷ 17 = 1.68 mol - Oxygen gas
Molar mass O = 16 gr/mol
Molar mass O₂ = 16 × 2 = 32 gr/mol
mass = 83.4 grams
n = m ÷ molar mass = 83.4 ÷ 32 = 2.61 mol - n O₂ ÷ coefficient O₂ = 2.61 ÷ 7 = 0.37
n NH₃ ÷ coefficient NH₃ = 1.68 ÷ 4 = 0.42
0.42 > 0.37 it means that the ammonia gas is in excess and the O₂ is limiting.
According to stoichiometry, the number of moles NO₂ with the number of moles O₂ has the ratio with the coefficient in reaction.
- Theoretically the number moles of NO₂
n O₂ : n NO₂ = 7 : 4
2.61 : n NO₂ = 7 : 4
n NO₂ = 4 x 2.61 : 7 = 1.49 mol - The actual number of moles NO₂
Molar mas NO₂ = 14 + (16 × 2) = 14 + 32 = 46 gr/mol
n NO₂ = m ÷ molar mass = 61.9 ÷ 46 = 1.35 mol
The percent yield NO₂ is the ratio of the actual number of moles NO₂ with the theoretical number of moles NO₂ times 100%.
P = (1.35 ÷ 1.49) × 100%
P = 0.9052 × 100%
P = 90.52%
Learn more about stoichiometry here: brainly.com/question/13691565
#SPJ4