Answer:
107Ag has abundance of 51.7%
109Ag has abundance of 48.3%
Explanation: Please see attachment for explanation
Answer:
[Ag⁺] = 5.0x10⁻¹⁴M
Explanation:
The product solubility constant, Ksp, of the insoluble salts PbI₂ and AgI is defined as follows:
Ksp(PbI₂) = [Pb²⁺] [I⁻]² = 1.4x10⁻⁸
Ksp(AgI) = [Ag⁺] [I⁻] = 8.3x10⁻¹⁷
The PbI₂ <em>just begin to precipitate when the product [Pb²⁺] [I⁻]² = 1.4x10⁻⁸</em>
<em />
As the initial [Pb²⁺] = 0.0050M:
[Pb²⁺] [I⁻]² = 1.4x10⁻⁸
[0.0050] [I⁻]² = 1.4x10⁻⁸
[I⁻]² = 1.4x10⁻⁸ / 0.0050
[I⁻]² = 2.8x10⁻⁶
<h3>[I⁻] = 1.67x10⁻³</h3><h3 />
So, as the [I⁻] concentration is also in the expression of Ksp of AgI and you know concentration in solution of I⁻ = 1.67x10⁻³M:
[Ag⁺] [I⁻] = 8.3x10⁻¹⁷
[Ag⁺] [1.67x10⁻³] = 8.3x10⁻¹⁷
<h3>[Ag⁺] = 5.0x10⁻¹⁴M</h3>
Answer: electronic configuration
Explanation:
I couldn't really find anything about the growth time but it does say that it could remain viable in soil for up to 40 years
Answer:
a. 3; b. 5; c. 10; d. 12
Explanation:
pH is defined as the negative log of the hydronium concentration:
pH = -log[H₃O⁺] (hydronium concentration)
For problems a. and b., HCl and HNO₃ are strong acids. This means that all of the HCl and HNO₃ would ionize, producing hydronium (H₃O⁺) and the conjugate bases Cl⁻ and NO₃⁻ respectively. Further, since all of the strong acid ionizes, 1 x 10⁻³ M H₃O⁺ would be produced for a., and 1.0 x 10⁻⁵ M H₃O⁺ for b. Plugging in your calculator -log[1 x 10⁻³] and -log[1.0 x 10⁻⁵] would equal 3 and 5, respectively.
For problems c. and d. we are given a strong base rather than acid. In this case, we can calculate the pOH:
pOH = -log[OH⁻] (hydroxide concentration)
Strong bases similarly ionize to completion, producing [OH⁻] in the process; 1 x 10⁻⁴ M OH⁻ will be produced for c., and 1.0 x 10⁻² M OH⁻ produced for d. Taking the negative log of the hydroxide concentrations would yield a pOH of 4 for c. and a pOH of 2 for d.
Finally, to find the pH of c. and d., we can take the pOH and subtract it from 14, giving us 10 for c. and 12 for d.
(Subtracting from 14 is assuming we are at 25°C; 14, the sum of pH and pOH, changes at different temperatures.)